Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 23(5): 307-328, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058649

RESUMO

Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-ß (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.


Assuntos
Carioferinas , beta Carioferinas , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Poro Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares , beta Carioferinas/metabolismo
2.
Microb Biotechnol ; 11(5): 943-951, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014612

RESUMO

As current methods for antibiotic drug discovery are being outpaced by the rise of antimicrobial resistance, new methods and innovative technologies are necessary to replenish our dwindling arsenal of antimicrobial agents. To this end, we developed the PepSAVI-MS pipeline to expedite the search for natural product bioactive peptides. Herein we demonstrate expansion of PepSAVI-MS for the discovery of bacterial-sourced bioactive peptides through identification of the bacteriocin Bac-21 from Enterococcus faecalis pPD1. Minor pipeline modifications including implementation of bacteria-infused agar diffusion assays and optional digestion of peptide libraries highlight the versatility and wide adaptability of the PepSAVI-MS pipeline. Additionally, we have experimentally validated the primary protein sequence of the active, mature Bac-21 peptide for the first time and have confirmed its identity with respect to primary sequence and post-translational processing. Successful application of PepSAVI-MS to bacterial secretomes as demonstrated herein establishes proof-of-principle for use in novel microbial bioactive peptide discovery.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/farmacologia , Bacteriocinas/análise , Bacteriocinas/farmacologia , Produtos Biológicos/análise , Produtos Biológicos/farmacologia , Enterococcus faecalis/química , Espectrometria de Massas , Proteoma/análise
3.
Anal Chem ; 89(22): 12030-12038, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29016107

RESUMO

Myelin basic protein (MBP) plays an important structural and functional role in the neuronal myelin sheath. Translated MBP exhibits extreme microheterogeneity with numerous alternative splice variants (ASVs) and post-translational modifications (PTMs) reportedly tied to central nervous system maturation, myelin stability, and the pathobiology of various de- and dys-myelinating disorders. Conventional bioanalytical tools cannot efficiently examine ASV and PTM events simultaneously, which limits understanding of the role of MBP microheterogeneity in human physiology and disease. To address this need, we report on a top-down proteomics pipeline that combines superficially porous reversed-phase liquid chromatography (SPLC), Fourier transform mass spectrometry (FTMS), data-independent acquisition (DIA) with nozzle-skimmer dissociation (NSD), and aligned data processing resources to rapidly characterize abundant MBP proteoforms within murine tissue. The three-tier proteoform identification and characterization workflow resolved four known MBP ASVs and hundreds of differentially modified states from a single 90 min SPLC-FTMS run on ∼0.5 µg of material. This included 323 proteoforms for the 14.1 kDa ASV alone. We also identified two novel ASVs from an alternative transcriptional start site (ATSS) of the MBP gene as well as a never before characterized S-acylation event linking palmitic acid, oleic acid, and stearic acid at C78 of the 17.125 kDa ASV.


Assuntos
Cromatografia de Fase Reversa/métodos , Proteína Básica da Mielina/análise , Animais , Análise de Fourier , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA