Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neurology ; 103(1): e209419, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862136

RESUMO

BACKGROUND AND OBJECTIVES: Discordance between CSF and PET biomarkers of ß-amyloid (Aß) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aß-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aß, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories. METHODS: Across 822 cognitively unimpaired (n = 261) and cognitively impaired (n = 561) Alzheimer's Disease Neuroimaging Initiative individuals (384 [46.7%] females, mean age 73.0 ± 7.4 years), we fitted baseline CSF-Aß42 and global Aß-PET to a hyperbolic regression model, deriving a participant-specific Aß-aggregation score (standardized residuals); negative values represent more soluble relative to aggregated Aß and positive values more aggregated relative to soluble Aß. Using linear models, we investigated whether methodological factors, demographics, CSF biomarkers, and vascular burden contributed to Aß-aggregation scores. With linear mixed models, we assessed whether Aß-aggregation scores were predictive of cognitive functioning. Analyses were repeated in an early independent validation cohort of 383 Amyloid Imaging to Prevent Alzheimer's Disease Prognostic and Natural History Study individuals (224 [58.5%] females, mean age 65.2 ± 6.9 years). RESULTS: The imbalance model could be fit (pseudo-R2 = 0.94) in both cohorts, across CSF kits and PET tracers. Although no associations were observed with the main methodological factors, lower Aß-aggregation scores were associated with larger ventricular volume (ß = 0.13, p < 0.001), male sex (ß = -0.18, p = 0.019), and homozygous APOE-ε4 carriership (ß = -0.56, p < 0.001), whereas higher scores were associated with increased uncorrected CSF p-tau (ß = 0.17, p < 0.001) and t-tau (ß = 0.16, p < 0.001), better baseline executive functioning (ß = 0.12, p < 0.001), and slower global cognitive decline (ß = 0.14, p = 0.006). In the validation cohort, we replicated the associations with APOE-ε4, CSF t-tau, and, although modestly, with cognition. DISCUSSION: We propose a novel continuous model of Aß CSF/PET biomarker imbalance, accurately describing heterogeneity in soluble vs aggregated Aß pools in 2 independent cohorts across the full Aß continuum. Aß-aggregation scores were consistently associated with genetic and AD-associated CSF biomarkers, possibly reflecting disease heterogeneity beyond methodological influences.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Feminino , Masculino , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Idoso , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-Idade
2.
Ann Clin Transl Neurol ; 11(6): 1541-1556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757392

RESUMO

OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid ß1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.


Assuntos
Doença de Alzheimer , Doenças de Pequenos Vasos Cerebrais , Imagem de Tensor de Difusão , Substância Branca , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idoso , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Estudos Prospectivos
3.
Neuroimage ; 280: 120313, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595816

RESUMO

PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-ß (Aß) pathology. Established methods for assessing Aß burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aß load), the Aß-PET pathology accumulation index (Aß index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aß accumulation. RESULTS: All metrics showed good reliability. Aß load, Aß index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aß index and Aß load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aß load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aß load, the Aß index and the CLNMF can provide comparable performance to more established quantification methods of Aß PET tracer uptake. The CLNMF and Aß load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted.


Assuntos
Peptídeos beta-Amiloides , Benchmarking , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Tomografia por Emissão de Pósitrons
4.
Brain Commun ; 5(3): fcad088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151225

RESUMO

Amyloid-ß accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional connectivity in the pre-dementia stages of Alzheimer's disease. We study the associations between abnormal cerebrospinal fluid amyloid and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive performance, in 701 non-demented participants from the European Prevention of Alzheimer's Dementia cohort. Voxel-wise eigenvector centrality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the interaction between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigenvector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality alterations in very early stages of Alzheimer's disease and show that centrality variability over time adds relevant information on the dynamic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early biomarker of the interplay between early Alzheimer's disease pathology and cognitive decline.

5.
Hum Brain Mapp ; 44(7): 2754-2766, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852443

RESUMO

Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 ± 14.8 years) were scanned at baseline and after 1.7 ± 0.5 years follow-up (n = 248, mean age 62.4 ± 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 ± 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 ± 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 ± 6.3 and - 1.1 ± 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Estudos Transversais , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Perfusão , Marcadores de Spin
6.
Brain Commun ; 4(3): fcac150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783557

RESUMO

White matter hyperintensities (WMHs) have a heterogeneous aetiology, associated with both vascular risk factors and amyloidosis due to Alzheimer's disease. While spatial distribution of both amyloid and WM lesions carry important information for the underlying pathogenic mechanisms, the regional relationship between these two pathologies and their joint contribution to early cognitive deterioration remains largely unexplored. We included 662 non-demented participants from three Amyloid Imaging to Prevent Alzheimer's disease (AMYPAD)-affiliated cohorts: EPAD-LCS (N = 176), ALFA+ (N = 310), and EMIF-AD PreclinAD Twin60++ (N = 176). Using PET imaging, cortical amyloid burden was assessed regionally within early accumulating regions (medial orbitofrontal, precuneus, and cuneus) and globally, using the Centiloid method. Regional WMH volume was computed using Bayesian Model Selection. Global associations between WMH, amyloid, and cardiovascular risk scores (Framingham and CAIDE) were assessed using linear models. Partial least square (PLS) regression was used to identify regional associations. Models were adjusted for age, sex, and APOE-e4 status. Individual PLS scores were then related to cognitive performance in 4 domains (attention, memory, executive functioning, and language). While no significant global association was found, the PLS model yielded two components of interest. In the first PLS component, a fronto-parietal WMH pattern was associated with medial orbitofrontal-precuneal amyloid, vascular risk, and age. Component 2 showed a posterior WMH pattern associated with precuneus-cuneus amyloid, less related to age or vascular risk. Component 1 was associated with lower performance in all cognitive domains, while component 2 only with worse memory. In a large pre-dementia population, we observed two distinct patterns of regional associations between WMH and amyloid burden, and demonstrated their joint influence on cognitive processes. These two components could reflect the existence of vascular-dependent and -independent manifestations of WMH-amyloid regional association that might be related to distinct primary pathophysiology.

7.
Neuroimage Clin ; 35: 103106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35839659

RESUMO

The European Prevention of Alzheimer Dementia (EPAD) is a multi-center study that aims to characterize the preclinical and prodromal stages of Alzheimer's Disease. The EPAD imaging dataset includes core (3D T1w, 3D FLAIR) and advanced (ASL, diffusion MRI, and resting-state fMRI) MRI sequences. Here, we give an overview of the semi-automatic multimodal and multisite pipeline that we developed to curate, preprocess, quality control (QC), and compute image-derived phenotypes (IDPs) from the EPAD MRI dataset. This pipeline harmonizes DICOM data structure across sites and performs standardized MRI preprocessing steps. A semi-automated MRI QC procedure was implemented to visualize and flag MRI images next to site-specific distributions of QC features - i.e. metrics that represent image quality. The value of each of these QC features was evaluated through comparison with visual assessment and step-wise parameter selection based on logistic regression. IDPs were computed from 5 different MRI modalities and their sanity and potential clinical relevance were ascertained by assessing their relationship with biological markers of aging and dementia. The EPAD v1500.0 data release encompassed core structural scans from 1356 participants 842 fMRI, 831 dMRI, and 858 ASL scans. From 1356 3D T1w images, we identified 17 images with poor quality and 61 with moderate quality. Five QC features - Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Coefficient of Joint Variation (CJV), Foreground-Background energy Ratio (FBER), and Image Quality Rate (IQR) - were selected as the most informative on image quality by comparison with visual assessment. The multimodal IDPs showed greater impairment in associations with age and dementia biomarkers, demonstrating the potential of the dataset for future clinical analyses.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/prevenção & controle , Biomarcadores , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Sintomas Prodrômicos , Fluxo de Trabalho
8.
Neurology ; 98(17): e1692-e1703, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35292558

RESUMO

BACKGROUND AND OBJECTIVES: ß-amyloid (Aß) staging models assume a single spatial-temporal progression of amyloid accumulation. We assessed evidence for Aß accumulation subtypes by applying the data-driven Subtype and Stage Inference (SuStaIn) model to amyloid-PET data. METHODS: Amyloid-PET data of 3,010 participants were pooled from 6 cohorts (ALFA+, EMIF-AD, ABIDE, OASIS, and ADNI). Standardized uptake value ratios were calculated for 17 regions. We applied the SuStaIn algorithm to identify consistent subtypes in the pooled dataset based on the cross-validation information criterion and the most probable subtype/stage classification per scan. The effects of demographics and risk factors on subtype assignment were assessed using multinomial logistic regression. RESULTS: Participants were mostly cognitively unimpaired (n = 1890 [62.8%]), had a mean age of 68.72 (SD 9.1) years, 42.1% were APOE ε4 carriers, and 51.8% were female. A 1-subtype model recovered the traditional amyloid accumulation trajectory, but SuStaIn identified 3 optimal subtypes, referred to as frontal, parietal, and occipital based on the first regions to show abnormality. Of the 788 (26.2%) with strong subtype assignment (>50% probability), the majority was assigned to frontal (n = 415 [52.5%]), followed by parietal (n = 199 [25.3%]) and occipital subtypes (n = 175 [22.2%]). Significant differences across subtypes included distinct proportions of APOE ε4 carriers (frontal 61.8%, parietal 57.1%, occipital 49.4%), participants with dementia (frontal 19.7%, parietal 19.1%, occipital 31.0%), and lower age for the parietal subtype (frontal/occipital 72.1 years, parietal 69.3 years). Higher amyloid (Centiloid) and CSF p-tau burden was observed for the frontal subtype; parietal and occipital subtypes did not differ. At follow-up, most participants (81.1%) maintained baseline subtype assignment and 25.6% progressed to a later stage. DISCUSSION: Whereas a 1-trajectory model recovers the established pattern of amyloid accumulation, SuStaIn determined that 3 subtypes were optimal, showing distinct associations with Alzheimer disease risk factors. Further analyses to determine clinical utility are warranted.


Assuntos
Doença de Alzheimer , Amiloidose , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Amiloide , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
9.
Aging Brain ; 2: 100054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908898

RESUMO

Gray matter networks are altered with amyloid accumulation in the earliest stage of AD, and are associated with decline throughout the AD spectrum. It remains unclear to what extent gray matter network abnormalities are associated with hyperphosphorylated-tau (p-tau). We studied the relationship of cerebrospinal fluid (CSF) p-tau181 with gray matter networks in non-demented participants from the European Prevention of Alzheimer's Dementia (EPAD) cohort, and studied dependencies on amyloid and cognitive status. Gray matter networks were extracted from baseline structural 3D T1w MRI. P-tau181 and abeta were measured with the Roche cobas Elecsys System. We studied the associations of CSF biomarkers levels with several network's graph properties. We further studied whether the relationships of p-tau 181 and network measures were dependent on amyloid status and cognitive stage (CDR). We repeated these analyses for network properties at a regional level, where we averaged local network values across cubes within each of 116 areas as defined by the automated anatomical labeling (AAL) atlas. Amyloid positivity was associated with higher network size and betweenness centrality, and lower gamma, clustering and small-world coefficients. Higher CSF p-tau 181 levels were related to lower betweenness centrality, path length and lambda coefficients (all p < 0.01). Three-way interactions between p-tau181, amyloid status and CDR were found for path length, lambda and clustering (all p < 0.05): Cognitively unimpaired amyloid-negative participants showed lower path length and lambda values with higher CSF p-tau181 levels. Amyloid-positive participants with impaired cognition demonstrated lower clustering coefficients in association to higher CSF p-tau181 levels. Our results suggest that alterations in gray matter network clustering coefficient is an early and specific event in AD.

10.
Brain Commun ; 3(4): fcab201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34617016

RESUMO

Cortical accumulation of amyloid beta is one of the first events of Alzheimer's disease pathophysiology, and has been suggested to follow a consistent spatiotemporal ordering, starting in the posterior cingulate cortex, precuneus and medio-orbitofrontal cortex. These regions overlap with those of the default mode network, a brain network also involved in memory functions. Aberrant default mode network functional connectivity and higher network sparsity have been reported in prodromal and clinical Alzheimer's disease. We investigated the association between amyloid burden and default mode network connectivity in the preclinical stage of Alzheimer's disease and its association with longitudinal memory decline. We included 173 participants, in which amyloid burden was assessed both in CSF by the amyloid beta 42/40 ratio, capturing the soluble part of amyloid pathology, and in dynamic PET scans calculating the non-displaceable binding potential in early-stage regions. The default mode network was identified with resting-state functional MRI. Then, we calculated functional connectivity in the default mode network, derived from independent component analysis, and eigenvector centrality, a graph measure recursively defining important nodes on the base of their connection with other important nodes. Memory was tested at baseline, 2- and 4-year follow-up. We demonstrated that higher amyloid burden as measured by both CSF amyloid beta 42/40 ratio and non-displaceable binding potential in the posterior cingulate cortex was associated with lower functional connectivity in the default mode network. The association between amyloid burden (CSF and non-displaceable binding potential in the posterior cingulate cortex) and aberrant default mode network connectivity was confirmed at the voxel level with both functional connectivity and eigenvector centrality measures, and it was driven by voxel clusters localized in the precuneus, cingulate, angular and left middle temporal gyri. Moreover, we demonstrated that functional connectivity in the default mode network predicts longitudinal memory decline synergistically with regional amyloid burden, as measured by non-displaceable binding potential in the posterior cingulate cortex. Taken together, these results suggest that early amyloid beta deposition is associated with aberrant default mode network connectivity in cognitively healthy individuals and that default mode network connectivity markers can be used to identify subjects at risk of memory decline.

11.
Alzheimers Dement (Amst) ; 13(1): e12216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368416

RESUMO

INTRODUCTION: The value of quantitative longitudinal and regional amyloid beta (Aß) measurements in predicting cognitive decline in initially cognitively unimpaired (CU) individuals remains to be determined. METHODS: We selected 133 CU individuals with two or more [11C]Pittsburgh compound B ([11C]PiB) scans and neuropsychological data from Open Access Series of Imaging Studies (OASIS-3). Baseline and annualized distribution volume ratios were computed for a global composite and four regional clusters. The predictive value of Aß measurements (baseline, slope, and interaction) on longitudinal cognitive performance was examined. RESULTS: Global performance could only be predicted by Aß burden in an early cluster (precuneus, lateral orbitofrontal, and insula) and the precuneus region of interest (ROI) by itself significantly improved the model. Precuneal Aß burden was also predictive of immediate and delayed episodic memory performance. In Aß subjects at baseline (N = 93), lateral orbitofrontal Aß burden predicted working and semantic memory performance. DISCUSSION: Quantifying longitudinal and regional changes in Aß can improve the prediction of cognitive functioning in initially CU individuals.

12.
Neurology ; 97(8): e794-e802, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34099528

RESUMO

OBJECTIVE: To characterize functional network changes related to conversion to cognitive impairment in a large sample of patients with multiple sclerosis (MS) over a period of 5 years. METHODS: Two hundred twenty-seven patients with MS and 59 healthy controls of the Amsterdam MS cohort underwent neuropsychological testing and resting-state fMRI at 2 time points (time interval 4.9 ± 0.9 years). At both baseline and follow-up, patients were categorized as cognitively preserved (CP; n = 123), mildly impaired (MCI; z < -1.5 on ≥2 cognitive tests, n = 32), or impaired (CI; z < -2 on ≥2 tests, n = 72), and longitudinal conversion between groups was determined. Network function was quantified with eigenvector centrality, a measure of regional network importance, which was computed for individual resting-state networks at both time points. RESULTS: Over time, 18.9% of patients converted to a worse phenotype; 22 of 123 patients who were CP (17.9%) converted from CP to MCI, 10 of 123 from CP to CI (8.1%), and 12 of 32 patients with MCI converted to CI (37.5%). At baseline, default-mode network (DMN) centrality was higher in CI individuals compared to controls (p = 0.05). Longitudinally, ventral attention network (VAN) importance increased in CP, driven by stable CP and CP-to-MCI converters (p < 0.05). CONCLUSIONS: Of all patients, 19% worsened in their cognitive status over 5 years. Conversion from intact cognition to impairment is related to an initial disturbed functioning of the VAN, then shifting toward DMN dysfunction in CI. Because the VAN normally relays information to the DMN, these results could indicate that in MS normal processes crucial for maintaining overall network stability are progressively disrupted as patients clinically progress.


Assuntos
Encéfalo , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/fisiopatologia , Rede de Modo Padrão/fisiopatologia , Progressão da Doença , Esclerose Múltipla/diagnóstico , Rede Nervosa/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Rede Nervosa/diagnóstico por imagem , Índice de Gravidade de Doença
13.
Alzheimers Dement (Amst) ; 13(1): e12124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816751

RESUMO

INTRODUCTION: Amyloid beta (Aß) accumulation is the first pathological hallmark of Alzheimer's disease (AD), and it is associated with altered white matter (WM) microstructure. We aimed to investigate this relationship at a regional level in a cognitively unimpaired cohort. METHODS: We included 179 individuals from the European Medical Information Framework for AD (EMIF-AD) preclinAD study, who underwent diffusion magnetic resonance (MR) to determine tract-level fractional anisotropy (FA); mean, radial, and axial diffusivity (MD/RD/AxD); and dynamic [18F]flutemetamol) positron emission tomography (PET) imaging to assess amyloid burden. RESULTS: Regression analyses showed a non-linear relationship between regional amyloid burden and WM microstructure. Low amyloid burden was associated with increased FA and decreased MD/RD/AxD, followed by decreased FA and increased MD/RD/AxD upon higher amyloid burden. The strongest association was observed between amyloid burden in the precuneus and body of the corpus callosum (CC) FA and diffusivity (MD/RD) measures. In addition, amyloid burden in the anterior cingulate cortex strongly related to AxD and RD measures in the genu CC. DISCUSSION: Early amyloid deposition is associated with changes in WM microstructure. The non-linear relationship might reflect multiple stages of axonal damage.

14.
Alzheimers Dement ; 17(7): 1189-1204, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811742

RESUMO

BACKGROUND: We classified non-demented European Prevention of Alzheimer's Dementia (EPAD) participants through the amyloid/tau/neurodegeneration (ATN) scheme and assessed their neuropsychological and imaging profiles. MATERIALS AND METHODS: From 1500 EPAD participants, 312 were excluded. Cerebrospinal fluid cut-offs of 1000 pg/mL for amyloid beta (Aß)1-42 and 27 pg/mL for p-tau181 were validated using Gaussian mixture models. Given strong correlation of p-tau and t-tau (R2  = 0.98, P < 0.001), neurodegeneration was defined by age-adjusted hippocampal volume. Multinomial regressions were used to test whether neuropsychological tests and regional brain volumes could distinguish ATN stages. RESULTS: Age was 65 ± 7 years, with 58% females and 38% apolipoprotein E (APOE) ε4 carriers; 57.1% were A-T-N-, 32.5% were in the Alzheimer's disease (AD) continuum, and 10.4% suspected non-Alzheimer's pathology. Age and cerebrovascular burden progressed with biomarker positivity (P < 0.001). Cognitive dysfunction appeared with T+. Paradoxically higher regional gray matter volumes were observed in A+T-N- compared to A-T-N- (P < 0.001). DISCUSSION: In non-demented individuals along the AD continuum, p-tau drives cognitive dysfunction. Memory and language domains are affected in the earliest stages.


Assuntos
Amiloide/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Voluntários Saudáveis/estatística & dados numéricos , Hipocampo/patologia , Proteínas tau/líquido cefalorraquidiano , Idoso , Europa (Continente) , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos/estatística & dados numéricos
15.
Eur J Nucl Med Mol Imaging ; 48(7): 2169-2182, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33615397

RESUMO

PURPOSE: To investigate the sensitivity of visual read (VR) to detect early amyloid pathology and the overall utility of regional VR. METHODS: [18F]Flutemetamol PET images of 497 subjects (ALFA+ N = 352; ADC N = 145) were included. Scans were visually assessed according to product guidelines, recording the number of positive regions (0-5) and a final negative/positive classification. Scans were quantified using the standard and regional Centiloid (CL) method. The agreement between VR-based classification and published CL-based cut-offs for early (CL = 12) and established (CL = 30) pathology was determined. An optimal CL cut-off maximizing Youden's index was derived. Global and regional CL quantification was compared to VR. Finally, 28 post-mortem cases from the [18F]flutemetamol phase III trial were included to assess the percentage agreement between VR and neuropathological classification of neuritic plaque density. RESULTS: VR showed excellent agreement against CL = 12 (κ = .89, 95.2%) and CL = 30 (κ = .88, 95.4%) cut-offs. ROC analysis resulted in an optimal CL = 17 cut-off against VR (sensitivity = 97.9%, specificity = 97.8%). Each additional positive VR region corresponded to a clear increase in global CL. Regional VR was also associated with regional CL quantification. Compared to mCERADSOT-based classification (i.e., any region mCERADSOT > 1.5), VR was in agreement in 89.3% of cases, with 13 true negatives, 12 true positives, and 3 false positives (FP). Regional sparse-to-moderate neuritic and substantial diffuse Aß plaque was observed in all FP cases. Regional VR was also associated with regional plaque density. CONCLUSION: VR is an appropriate method for assessing early amyloid pathology and that grading the extent of visual amyloid positivity could present clinical value.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Benzotiazóis , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons
16.
Neuroimage Clin ; 29: 102550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33418173

RESUMO

BACKGROUND: As disease progression remains poorly understood in multiple sclerosis (MS), we aim to investigate the sequence in which different disease milestones occur using a novel data-driven approach. METHODS: We analysed a cohort of 295 relapse-onset MS patients and 96 healthy controls, and considered 28 features, capturing information on T2-lesion load, regional brain and spinal cord volumes, resting-state functional centrality ("hubness"), microstructural tissue integrity of major white matter (WM) tracts and performance on multiple cognitive tests. We used a discriminative event-based model to estimate the sequence of biomarker abnormality in MS progression in general, as well as specific models for worsening physical disability and cognitive impairment. RESULTS: We demonstrated that grey matter (GM) atrophy of the cerebellum, thalamus, and changes in corticospinal tracts are early events in MS pathology, whereas other WM tracts as well as the cognitive domains of working memory, attention, and executive function are consistently late events. The models for disability and cognition show early functional changes of the default-mode network and earlier changes in spinal cord volume compared to the general MS population. Overall, GM atrophy seems crucial due to its early involvement in the disease course, whereas WM tract integrity appears to be affected relatively late despite the early onset of WM lesions. CONCLUSION: Data-driven modelling revealed the relative occurrence of both imaging and non-imaging events as MS progresses, providing insights into disease propagation mechanisms, and allowing fine-grained staging of patients for monitoring purposes.


Assuntos
Esclerose Múltipla , Substância Branca , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
17.
Nat Rev Neurol ; 17(3): 173-184, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33437067

RESUMO

MRI studies have provided valuable insights into the structure and function of neural networks, particularly in health and in classical neurodegenerative conditions such as Alzheimer disease. However, such work is also highly relevant in other diseases of the CNS, including multiple sclerosis (MS). In this Review, we consider the effects of MS pathology on brain networks, as assessed using MRI, and how these changes to brain networks translate into clinical impairments. We also discuss how this knowledge can inform the targeting of MS treatments and the potential future directions for research in this area. Studying MS is challenging as its pathology involves neurodegenerative and focal inflammatory elements, both of which could disrupt neural networks. The disruption of white matter tracts in MS is reflected in changes in network efficiency, an increasingly random grey matter network topology, relative cortical disconnection, and both increases and decreases in connectivity centred around hubs such as the thalamus and the default mode network. The results of initial longitudinal studies suggest that these changes evolve rather than simply increase over time and are linked with clinical features. Studies have also identified a potential role for treatments that functionally modify neural networks as opposed to altering their structure.


Assuntos
Encéfalo/fisiopatologia , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Humanos , Inflamação/fisiopatologia
18.
Neurology ; 95(11): e1538-e1553, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32675080

RESUMO

OBJECTIVE: To develop and evaluate a model for staging cortical amyloid deposition using PET with high generalizability. METHODS: Three thousand twenty-seven individuals (1,763 cognitively unimpaired [CU], 658 impaired, 467 with Alzheimer disease [AD] dementia, 111 with non-AD dementia, and 28 with missing diagnosis) from 6 cohorts (European Medical Information Framework for AD, Alzheimer's and Family, Alzheimer's Biomarkers in Daily Practice, Amsterdam Dementia Cohort, Open Access Series of Imaging Studies [OASIS]-3, Alzheimer's Disease Neuroimaging Initiative [ADNI]) who underwent amyloid PET were retrospectively included; 1,049 individuals had follow-up scans. With application of dataset-specific cutoffs to global standard uptake value ratio (SUVr) values from 27 regions, single-tracer and pooled multitracer regional rankings were constructed from the frequency of abnormality across 400 CU individuals (100 per tracer). The pooled multitracer ranking was used to create a staging model consisting of 4 clusters of regions because it displayed a high and consistent correlation with each single-tracer ranking. Relationships between amyloid stage, clinical variables, and longitudinal cognitive decline were investigated. RESULTS: SUVr abnormality was most frequently observed in cingulate, followed by orbitofrontal, precuneal, and insular cortices and then the associative, temporal, and occipital regions. Abnormal amyloid levels based on binary global SUVr classification were observed in 1.0%, 5.5%, 17.9%, 90.0%, and 100.0% of individuals in stage 0 to 4, respectively. Baseline stage predicted decline in Mini-Mental State Examination (MMSE) score (ADNI: n = 867, F = 67.37, p < 0.001; OASIS: n = 475, F = 9.12, p < 0.001) and faster progression toward an MMSE score ≤25 (ADNI: n = 787, hazard ratio [HR]stage1 2.00, HRstage2 3.53, HRstage3 4.55, HRstage4 9.91, p < 0.001; OASIS: n = 469, HRstage4 4.80, p < 0.001). CONCLUSION: The pooled multitracer staging model successfully classified the level of amyloid burden in >3,000 individuals across cohorts and radiotracers and detects preglobal amyloid burden and distinct risk profiles of cognitive decline within globally amyloid-positive individuals.


Assuntos
Amiloidose/diagnóstico por imagem , Radioisótopos de Carbono , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
19.
Neuroimage ; 219: 117031, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526385

RESUMO

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Algoritmos , Circulação Cerebrovascular/fisiologia , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Software , Marcadores de Spin
20.
Alzheimers Dement ; 16(5): 750-758, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32281303

RESUMO

INTRODUCTION: The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) Prognostic and Natural History Study (PNHS) aims at understanding the role of amyloid imaging in the earliest stages of Alzheimer's disease (AD). AMYPAD PNHS adds (semi-)quantitative amyloid PET imaging to several European parent cohorts (PCs) to predict AD-related progression as well as address methodological challenges in amyloid PET. METHODS: AMYPAD PNHS is an open-label, prospective, multi-center, cohort study recruiting from multiple PCs. Around 2000 participants will undergo baseline amyloid positron emission tomography (PET), half of whom will be invited for a follow-up PET 12 at least 12 months later. RESULTS: Primary include several amyloid PET measurements (Centiloid, SUVr, BPND , R1 ), and secondary are their changes from baseline, relationship to other amyloid markers (cerebrospinal fluid and visual assessment), and predictive value of AD-related decline. EXPECTED IMPACT: Determining the role of amyloid PET for the understanding of this complex disease and potentially improving secondary prevention trials.


Assuntos
Doença de Alzheimer , Amiloide/metabolismo , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Progressão da Doença , Europa (Continente) , Feminino , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA