Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
ChemSusChem ; 17(3): e202301365, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37830175

RESUMO

[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2 ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4FeH ) and a unique diiron moiety (2FeH ). Previous attempts to prevent O2 -induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH . In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH ) surrounding the H-cluster. As this hydrophilic path may be accessible for O2 molecules we applied site-directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH . These results reveal new strategies for improving the O2 stability of [FeFe]-hydrogenases by focusing on the O2 diffusion network near the active site.


Assuntos
Aquaporinas , Hidrogenase , Proteínas Ferro-Enxofre , Hidrogênio/química , Hidrogenase/química , Prótons , Oxigênio/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo
2.
Lancet Respir Med ; 12(4): 305-322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142698

RESUMO

Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.


Assuntos
Medicina de Precisão , Sepse , Humanos , Medicina de Precisão/métodos , Inteligência Artificial , Objetivos , Algoritmos , Sepse/diagnóstico , Sepse/terapia
3.
Biomolecules ; 13(11)2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-38002294

RESUMO

The amino acids arginine (Arg), asymmetric (ADMA) and symmetric dimethylarginine (SDMA) are related to nitric oxide (NO) metabolism and potential markers of two different disease entities: cardiovascular disease such as atherosclerosis and systemic inflammation in critically ill patients with sepsis. Although very different in their pathophysiological genesis, both entities involve the functional integrity of blood vessels. In this context, large population-based data associating NO metabolites with proinflammatory markers, e.g., white blood cell count (WBC), high-sensitivity C-reactive protein (hsCRP), and fibrinogen, or cytokines are sparse. We investigated the association of Arg, ADMA and SDMA with WBC, hsCRP, and fibrinogen in 3556 participants of the Study of Health in Pomerania (SHIP)-TREND study. Furthermore, in a subcohort of 456 subjects, 31 inflammatory markers and cytokines were analyzed. We identified Arg and SDMA to be positively associated with hsCRP (ß coefficient 0.010, standard error (SE) 0.002 and 0.298, 0.137, respectively) as well as fibrinogen (ß 5.23 × 10-3, SE 4.75 × 10-4 and 0.083, 0.031, respectively). ADMA was not associated with WBC, hsCRP, or fibrinogen. Furthermore, in the subcohort, Arg was inversely related to a proliferation-inducing ligand (APRIL). SDMA was positively associated with osteocalcin, tumor necrosis factor receptor 1 and 2, and soluble cluster of differentiation 30. Our findings provide new insights into the involvement of Arg, ADMA, and SDMA in subclinical inflammation in the general population.


Assuntos
Arginina , Proteína C-Reativa , Humanos , Arginina/metabolismo , Inflamação , Fibrinogênio , Citocinas , Biomarcadores
4.
Eur J Anaesthesiol ; 40(6): 436-441, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052059

RESUMO

BACKGROUND: Measuring cardiac output (CO) is important in patients treated with veno-venous extracorporeal membrane oxygenation (vvECMO) because vvECMO flow and CO need to be balanced. Uncalibrated pulse wave analysis with the Pressure Recording Analytical Method (PRAM) may be suitable to measure CO in patients with vvECMO therapy. OBJECTIVE: To assess the agreement between CO measured by PRAM (PRAM-CO; test method) and CO measured by transthoracic echocardiography (TTE-CO; reference method). DESIGN: A prospective observational method comparison study. SETTING: The ICU of a German university hospital between March and December 2021. PATIENTS: Thirty one adult patients with respiratory failure requiring vvECMO therapy: 29 of the 31 patients (94%) were treated for COVID-19 related respiratory failure. MAIN OUTCOME MEASURES: PRAM-CO and TTE-CO were measured simultaneously at two time points in each patient with at least 20 min between measurements. A radial or femoral arterial catheter-derived blood pressure waveform was used for PRAM-CO measurements. TTE-CO measurements were conducted using the pulsed wave Doppler-derived velocity time integral of the left ventricular outflow tract (LVOT) and the corresponding LVOT diameter. PRAM-CO and TTE-CO were compared using Bland-Altman analysis and the percentage error (PE). We defined a PE of <30% as clinically acceptable. RESULTS: Mean ±â€ŠSD PRAM-CO was 6.86 ±â€Š1.49 l min -1 and mean TTE-CO was 6.94 ±â€Š1.58 l min -1 . The mean of the differences between PRAM-CO and TTE-CO was 0.09 ±â€Š0.73 l min -1 with a lower 95% limit of agreement of -1.34 l min -1 and an upper 95% limit of agreement of 1.51 l min -1 . The PE was 21%. CONCLUSIONS: The agreement between PRAM-CO and TTE-CO is clinically acceptable in adult patients with vvECMO therapy.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Adulto , Humanos , Ecocardiografia/métodos , Débito Cardíaco/fisiologia , Pressão Arterial , Reprodutibilidade dos Testes
9.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430535

RESUMO

Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/genética , Proteínas do Envelope Viral/genética , Vacina BNT162 , Glicoproteínas de Membrana/metabolismo
10.
Crit Care ; 26(1): 308, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209188

RESUMO

The 40-year-old experience with glucocorticosteroids (GCs) in the context of severe infections is complex and troublesome. Recently, however, a clear indication for GCs in severe COVID-19 has been established. This may constitute a harbinger of a wider use of GCs in critical illnesses. A fundamental prerequisite of such an action is a better understanding of the heterogeneity of critical illness and GCs operationalization within the precision medicine approach. In this perspective, we formulate ten major questions regarding the use of GCs in critical illness. Answering them will likely facilitate a new era of effective and personalized GCs use in modern critical care.


Assuntos
Tratamento Farmacológico da COVID-19 , Glucocorticoides , Adulto , Cuidados Críticos , Estado Terminal/terapia , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos
12.
Chem Sci ; 13(29): 8704, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974761

RESUMO

[This corrects the article DOI: 10.1039/D2SC00385F.].

13.
Chem Sci ; 13(24): 7289-7294, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799827

RESUMO

[FeFe]-hydrogenases catalyze the reversible conversion of molecular hydrogen into protons and electrons with remarkable efficiency. However, their industrial applications are limited by their oxygen sensitivity. Recently, it was shown that the [FeFe]-hydrogenase from Clostridium beijerinckii (CbA5H) is oxygen-resistant and can be reactivated after oxygen exposure. In this work, we used multifrequency continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy to characterize the active center of CbA5H, the H-cluster. Under oxidizing conditions, the spectra were dominated by an additional and unprecedented radical species. The generation of this radical signal depends on the presence of an intact H-cluster and a complete proton transfer pathway including the bridging azadithiolate ligand. Selective 57Fe enrichment combined with isotope-sensitive electron-nuclear double resonance (ENDOR) spectroscopy revealed a spin density distribution that resembles an H-cluster state. Overall, we uncovered a radical species in CbA5H that is potentially involved in the redox sensing of CbA5H.

15.
mBio ; 13(3): e0036422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467423

RESUMO

SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy. IMPORTANCE The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Linhagem Celular , Chlorocebus aethiops , Humanos , Mutação , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
16.
Cell Rep ; 39(5): 110754, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35477025

RESUMO

Rapid spread of SARS-CoV-2 variants C.1.2 and B.1.621 (Mu variant) in Africa and the Americas, respectively, as well as a high number of mutations in the viral spike proteins raised concerns that these variants might pose an elevated threat to human health. Here, we show that C.1.2 and B.1.621 spike proteins mediate increased entry into certain cell lines but do not exhibit increased ACE2 binding. Further, we demonstrate that C.1.2 and B.1.621 are resistant to neutralization by bamlanivimab but remain sensitive to inhibition by antibody cocktails used for COVID-19 therapy. Finally, we show that C.1.2 and B.1.621 partially escape neutralization by antibodies induced upon infection and vaccination, with escape of vaccine-induced antibodies being as potent as that measured for B.1.351 (Beta variant), which is known to be highly neutralization resistant. Collectively, C.1.2 and B.1.621 partially evade control by vaccine-induced antibodies, suggesting that close monitoring of these variants is warranted.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus , Vacinação
17.
J Nephrol ; 35(4): 1283-1287, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35445945

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is characterized by small vessel inflammation and the presence of autoantibodies against cytoplasmic proteases, most often proteinase-3 and myeloperoxidase. Peripheral blood monocytes are an important source of local macrophage accumulation within parenchymal organs, as evidenced by their presence in early lesions in ANCA-associated glomerulonephritis. Major histocompatibility complex (MHC) II cell surface receptor human leukocyte antigen receptor (HLA-DR) allows antigen presentation to T cells and is crucial for the initiation of an immune response. We herein report HLA-DR abundance in AAV and the kinetics of HLA-DR+ monocytes and T lymphocytes during remission induction therapy in AAV. Life-threatening AAV with pulmonary hemorrhage and renal involvement was associated with the presence of HLA-DR in a considerable population of peripheral blood monocytes and T lymphocytes, and relapsing disease manifested despite persistent B cell depletion after remission induction with rituximab. Moreover, remission induction in AAV with steroids, plasma exchange and intravenous cyclophosphamide, and improvement of clinical symptoms were associated with a decrease in HLA-DR+ differing between monocytes and T lymphocytes. Particularly, persistent suppression of HLA-DR+ monocytes was observed during remission induction, while an initial decrease in HLA-DR+ T lymphocytes was followed by recovery of this population during the further course. Detailed insights into HLA-DR kinetics could pave the way towards an increased understanding of immunopathology and identify patients that could mostly benefit from distinct remission induction regimens.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Ciclofosfamida/uso terapêutico , Antígenos HLA , Antígenos HLA-DR/uso terapêutico , Humanos , Cinética , Monócitos , Indução de Remissão , Rituximab/uso terapêutico , Linfócitos T
19.
Cell ; 185(3): 447-456.e11, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026151

RESUMO

The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or individuals vaccinated with the BioNTech-Pfizer vaccine (BNT162b2) with 12- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1 (Astra Zeneca-Oxford)/BNT162b2 vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Imunidade Adaptativa , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Masculino , Ligação Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação , Células Vero
20.
Cell Mol Immunol ; 19(3): 449-452, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34983951

RESUMO

Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Humanos , Mutação/imunologia , Testes de Neutralização/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA