RESUMO
Non-genetic influences on phenotypic traits can affect our interpretation of genetic variance and the evolutionary potential of populations to respond to selection, with consequences for our ability to predict the outcomes of selection. Long-term population surveys and experiments have shown that quantitative genetic estimates are influenced by nongenetic effects, including shared environmental effects, epigenetic effects, and social interactions. Recent developments to the "animal model" of quantitative genetics can now allow us to calculate precise individual-based measures of non-genetic phenotypic variance. These models can be applied to a much broader range of contexts and data types than used previously, with the potential to greatly expand our understanding of nongenetic effects on evolutionary potential. Here, we provide the first practical guide for researchers interested in distinguishing between genetic and nongenetic causes of phenotypic variation in the animal model. The methods use matrices describing individual similarity in nongenetic effects, analogous to the additive genetic relatedness matrix. In a simulation of various phenotypic traits, accounting for environmental, epigenetic, or cultural resemblance between individuals reduced estimates of additive genetic variance, changing the interpretation of evolutionary potential. These variances were estimable for both direct and parental nongenetic variances. Our tutorial outlines an easy way to account for these effects in both wild and experimental populations. These models have the potential to add to our understanding of the effects of genetic and nongenetic effects on evolutionary potential. This should be of interest both to those studying heritability, and those who wish to understand nongenetic variance.
Assuntos
Variação Genética , Modelos Genéticos , Fenótipo , Animais , Evolução Biológica , Tamanho Corporal , Meio Ambiente , Interação Gene-Ambiente , HumanosRESUMO
Science is meant to be the systematic and objective study of the world but evidence suggests that scientific practices are sometimes falling short of this expectation. In this invited idea, we argue that any failure to conduct research according to a documented plan (lack of reliability) and/or any failure to ensure that reconducting the same project would provide the same finding (lack of reproducibility), will result in a low probability of independent studies reaching the same outcome (lack of replicability). After outlining the challenges facing behavioral ecology and science more broadly and incorporating advice from international organizations such as the Center for Open Science (COS), we present clear guidelines and tutorials on what we think open practices represent for behavioral ecologists. In addition, we indicate some of the currently most appropriate and freely available tools for adopting these practices. Finally, we suggest that all journals in our field, such as Behavioral Ecology, give additional weight to transparent studies and therefore provide greater incentives to align our scientific practices to our scientific values. Overall, we argue that producing demonstrably credible science is now fully achievable for the benefit of each researcher individually and for our community as a whole.
RESUMO
Fitness can be profoundly influenced by the age at first reproduction (AFR), but to date the AFR-fitness relationship only has been investigated intraspecifically. Here, we investigated the relationship between AFR and average lifetime reproductive success (LRS) across 34 bird species. We assessed differences in the deviation of the Optimal AFR (i.e., the species-specific AFR associated with the highest LRS) from the age at sexual maturity, considering potential effects of life history as well as social and ecological factors. Most individuals adopted the species-specific Optimal AFR and both the mean and Optimal AFR of species correlated positively with life span. Interspecific deviations of the Optimal AFR were associated with indices reflecting a change in LRS or survival as a function of AFR: a delayed AFR was beneficial in species where early AFR was associated with a decrease in subsequent survival or reproductive output. Overall, our results suggest that a delayed onset of reproduction beyond maturity is an optimal strategy explained by a long life span and costs of early reproduction. By providing the first empirical confirmations of key predictions of life-history theory across species, this study contributes to a better understanding of life-history evolution.
Assuntos
Especiação Genética , Variação Genética , Longevidade/genética , Reprodução/genética , Animais , Aves/genética , Aves/crescimento & desenvolvimento , Aves/fisiologia , Evolução Molecular , Maturidade Sexual/genéticaRESUMO
Camouflage is an important strategy in animals to prevent predation. This includes disruptive coloration, where high-contrast markings placed at an animal's edge break up the true body shape. Successful disruption may also involve non-marginal markings found away from the body outline that create 'false edges' more salient than the true body form ('surface disruption'). However, previous work has focused on breaking up the true body outline, not on surface disruption. Furthermore, while high contrast may enhance disruption, it is untested where on the body different contrasts should be placed for maximum effect. We used artificial prey presented to wild avian predators in the field, to determine the effectiveness of surface disruption, and of different luminance contrast placed in different prey locations. Disruptive coloration was no more effective when comprising high luminance contrast per se, but its effectiveness was dramatically increased with high-contrast markings placed away from the body outline, creating effective surface disruption. A model of avian visual edge processing showed that surface disruption does not make object detection more difficult simply by creating false edges away from the true body outline, but its effect may also be based on a different visual mechanism. Our study has implications for whether animals can combine disruptive coloration with other 'conspicuous' signalling strategies.
Assuntos
Passeriformes/fisiologia , Comportamento Predatório , Animais , Sensibilidades de Contraste , Modelos Biológicos , Visão Ocular/fisiologia , Percepção Visual/fisiologiaRESUMO
One of the oldest theories of animal camouflage predicts that apparently conspicuous markings enhance concealment. Such 'distraction' marks are hypothesized to work by drawing the viewer's attention away from salient features, such as the body outline, that would otherwise reveal the animal. If distraction marks enhance concealment, then they offer a route for animals to combine camouflage markings with conspicuous signalling strategies, such as warning signals. However, the theory has never been tested and remains controversial. By using camouflaged artificial prey presented to wild avian predators, we test whether distractive markings enhance concealment. In contrast to predictions, we find that markings, both circular and irregular shapes, increase predation compared with unmarked targets. Markings became increasingly costly as their contrast against the prey increased. Our experiments failed to find any empirical support for the hypothesis that distraction markings are an important aspect of camouflage in animals.