RESUMO
Human lung development and disease has been difficult to study due to the lack of biologically relevant in vitro model systems. Human induced pluripotent stem cells (hiPSCs) can be differentiated stepwise into 3D multicellular lung organoids, made of both epithelial and mesenchymal cell populations. We recapitulate embryonic developmental cues by temporally introducing a variety of growth factors and small molecules to efficiently generate definitive endoderm, anterior foregut endoderm, and subsequently lung progenitor cells. These cells are then embedded in growth factor reduced (GFR)-basement membrane matrix medium, allowing them to spontaneously develop into 3D lung organoids in response to external growth factors. These whole lung organoids (WLO) undergo early lung developmental stages including branching morphogenesis and maturation after exposure to dexamethasone, cyclic AMP and isobutylxanthine. WLOs possess airway epithelial cells expressing the markers KRT5 (basal), SCGB3A2 (club) and MUC5AC (goblet) as well as alveolar epithelial cells expressing HOPX (alveolar type I) and SP-C (alveolar type II). Mesenchymal cells are also present, including smooth muscle actin (SMA), and platelet-derived growth factor receptor A (PDGFRα). iPSC derived WLOs can be maintained in 3D culture conditions for many months and can be sorted for surface markers to purify a specific cell population. iPSC derived WLOs can also be utilized to study human lung development, including signaling between the lung epithelium and mesenchyme, to model genetic mutations on human lung cell function and development, and to determine the cytotoxicity of infective agents.
Assuntos
Células Epiteliais Alveolares/citologia , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/citologia , Organogênese , Organoides/citologia , Engenharia Tecidual/métodos , Células Epiteliais Alveolares/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Biologia do Desenvolvimento , Endoderma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/metabolismo , Organoides/metabolismoRESUMO
The normal development of the pulmonary system is critical to transitioning from placental-dependent fetal life to alveolar-dependent newborn life. Human lung development and disease have been difficult to study due to the lack of an in vitro model system containing cells from the large airways and distal alveolus. This article describes a system that allows human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) to differentiate and form three-dimensional (3D) structures that emulate the development, cytoarchitecture, and function of the lung ("organoids"), containing epithelial and mesenchymal cell populations, and including the production of surfactant and presence of ciliated cells. The organoids can also be invested with mesoderm derivatives, differentiated from the same human pluripotent stem cells, such as alveolar macrophages and vasculature. Such lung organoids may be used to study the impact of environmental modifiers and perturbagens (toxins, microbial or viral pathogens, alterations in microbiome) or the efficacy and safety of drugs, biologics, and gene transfer. © 2020 Wiley Periodicals LLC. Basic Protocol: hESC/hiPSC dissection, definitive endoderm formation, and lung progenitor cell induction.
Assuntos
Infecções por Coronavirus/patologia , Pulmão/citologia , Organoides/citologia , Pneumonia Viral/patologia , Infecções Respiratórias/patologia , Betacoronavirus , COVID-19 , Técnicas de Cultura de Células , Diferenciação Celular , Infecções por Coronavirus/terapia , Endoderma/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Modelos Biológicos , Pandemias , Modelagem Computacional Específica para o Paciente , Pneumonia Viral/terapia , Infecções Respiratórias/terapia , SARS-CoV-2 , Imagem com Lapso de TempoRESUMO
The pathogenesis of bipolar disorder (BPD) is unknown. Using human-induced pluripotent stem cells (hiPSCs) to unravel pathological mechanisms in polygenic diseases is challenging, with few successful studies to date. However, hiPSCs from BPD patients responsive to lithium have offered unique opportunities to discern lithium's mechanism of action and hence gain insight into BPD pathology. By profiling the proteomics of BPD-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). The "set point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from lithium responsive (Li-R) BPD patients, but not other psychiatric and neurological disorders. Utilizing neurons differentiated from human patient stem cells as an in vitro platform, we were able to elucidate the mechanism driving the pathogenesis and pathophysiology of lithium-responsive BPD, heretofore unknown. Importantly, the findings in culture were validated in human postmortem material as well as in animal models of BPD behavior. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in dendritic spines, leading to modulated neural networks that may underlie Li-R BPD pathogenesis. This chapter reviews the methodology of leveraging a functional agent, lithium, to identify unknown pathophysiological pathways with hiPSCs and how to translate this disease modeling approach to other neurological disorders.
Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Lítio/farmacologia , Lítio/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologiaRESUMO
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.
Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lítio/farmacologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Química Encefálica , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , ProteômicaRESUMO
Access to unlimited numbers of live human neurons derived from stem cells offers unique opportunities for in vitro modeling of neural development, disease-related cellular phenotypes, and drug testing and discovery. However, to develop informative cellular in vitro assays, it is important to consider the relevant in vivo environment of neural tissues. Biomimetic 3D scaffolds are tools to culture human neurons under defined mechanical and physico-chemical properties providing an interconnected porous structure that may potentially enable a higher or more complex organization than traditional two-dimensional monolayer conditions. It is known that even minor variations in the internal geometry and mechanical properties of 3D scaffolds can impact cell behavior including survival, growth, and cell fate choice. In this report, we describe the design and engineering of 3D synthetic polyethylene glycol (PEG)-based and biodegradable gelatin-based scaffolds generated by a free form fabrication technique with precise internal geometry and elastic stiffnesses. We show that human neurons, derived from human embryonic stem (hESC) cells, are able to adhere to these scaffolds and form organoid structures that extend in three dimensions as demonstrated by confocal and electron microscopy. Future refinements of scaffold structure, size and surface chemistries may facilitate long term experiments and designing clinically applicable bioassays.