RESUMO
The evaluation of changes in heart contractility is essential during preclinical development for new cardiac- and non-cardiac-targeted compounds. This paper describes a protocol for assessing changes in contractility in adult human primary ventricular cardiomyocytes utilizing the MyoBLAZER, a non-invasive optical method that preserves the normal physiology and pharmacology of the cells. This optical recording method continuously measures contractility transients from multiple cells in parallel, providing both medium-throughput and valuable information for each individual cell in the field of view, enabling the real-time tracking of drug effects. The cardiomyocyte contractions are induced by paced electrical field stimulation, and the acquired bright field images are fed to an image-processing software that measures the sarcomere shortening across multiple cardiomyocytes. This method rapidly generates different endpoints related to the kinetics of contraction and relaxation phases, and the resulting data can then be interpreted in relation to different concentrations of a test article. This method is also employed in the late stages of preclinical development to perform follow-up mechanistic studies to support ongoing clinical studies. Thus, the adult human primary cardiomyocyte-based model combined with the optical system for continuous contractility monitoring has the potential to contribute to a new era of in vitro cardiac data translatability in preclinical medical therapy development.