Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 728866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589503

RESUMO

The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids-stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro-have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids-minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body-by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.

2.
Drug Test Anal ; 13(11-12): 1921-1928, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34505743

RESUMO

A fundamental challenge in preventive doping research is the study of metabolic pathways of substances banned in sport. However, the pharmacological predictions obtained by conventional in vitro or in vivo animal studies are occasionally of limited transferability to humans according to an inability of in vitro models to mimic higher order system physiology or due to various species-specific differences using animal models. A more recently established technology for simulating human physiology is the "organ-on-a-chip" principle. In a multichannel microfluidic cell culture chip, 3-dimensional tissue spheroids, which can constitute artificial and interconnected microscale organs, imitate principles of the human physiology. The objective of this study was to determine if the technology is suitable to adequately predict metabolic profiles of prohibited substances in sport. As model compounds, the frequently misused anabolic steroids, stanozolol and dehydrochloromethyltestosterone (DHCMT) were subjected to human liver spheroids in microfluidic cell culture chips. The metabolite patterns produced and circulating in the chip media were then assessed by LC-HRMS/(MS) at different time points of up to 14 days of incubation at 37°C. The overall profile of observed glucurono-conjugated stanozolol metabolites excellently matched the commonly found urinary pattern of metabolites, including 3'OH-stanozolol-glucuronide and stanozolol-N-glucuronides. Similarly, but to a lower extent, the DHCMT metabolic profile was in agreement with phase-I and phase-II biotransformation products regularly seen in postadministration urine specimens. In conclusion, this pilot study indicates that the "organ-on-a-chip" technology provides a high degree of conformity with traditional human oral administration studies, providing a promising approach for metabolic profiling in sports drug testing.


Assuntos
Dispositivos Lab-On-A-Chip , Estanozolol/análise , Detecção do Abuso de Substâncias/métodos , Testosterona/análogos & derivados , Cromatografia Líquida/métodos , Dopagem Esportivo/prevenção & controle , Estudos de Viabilidade , Humanos , Fígado/metabolismo , Projetos Piloto , Esferoides Celulares/metabolismo , Estanozolol/metabolismo , Espectrometria de Massas em Tandem/métodos , Testosterona/análise , Testosterona/metabolismo
3.
Adv Sci (Weinh) ; 7(20): 2000412, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101844

RESUMO

Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.

4.
Sci Rep ; 10(1): 7865, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398725

RESUMO

Extrapolation of cell culture-based test results to in vivo effects is limited, as cell cultures fail to emulate organ complexity and multi-tissue crosstalk. Biology-inspired microphysiological systems provide preclinical insights into absorption, distribution, metabolism, excretion, and toxicity of substances in vitro by using human three-dimensional organotypic cultures. We co-cultured a human lung equivalent from the commercially available bronchial MucilAir culture and human liver spheroids from HepaRG cells to assess the potential toxicity of inhaled substances under conditions that permit organ crosstalk. We designed a new HUMIMIC Chip with optimized medium supply and oxygenation of the organ cultures and cultivated them on-chip for 14 days in separate culture compartments of a closed circulatory perfusion system, demonstrating the viability and homeostasis of the tissue cultures. A single-dose treatment of the hepatotoxic and carcinogenic aflatoxin B1 impaired functionality in bronchial MucilAir tissues in monoculture but showed a protective effect when the tissues were co-cultured with liver spheroids, indicating that crosstalk can be achieved in this new human lung-liver co-culture. The setup described here may be used to determine the effects of exposure to inhaled substances on a systemic level.


Assuntos
Aflatoxina B1/farmacologia , Técnicas de Cocultura/métodos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Esferoides Celulares/efeitos dos fármacos , Administração por Inalação , Apoptose/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Venenos/farmacologia , Substâncias Protetoras/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
6.
Sci Rep ; 7(1): 14620, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29097671

RESUMO

Human in vitro physiological models studying disease and drug treatment effects are urgently needed as more relevant tools to identify new drug targets and therapies. We have developed a human microfluidic two-organ-chip model to study pancreatic islet-liver cross-talk based on insulin and glucose regulation. We have established a robust co-culture of human pancreatic islet microtissues and liver spheroids maintaining functional responses up to 15 days in an insulin-free medium. Functional coupling, demonstrated by insulin released from the islet microtissues in response to a glucose load applied in glucose tolerance tests on different days, promoted glucose uptake by the liver spheroids. Co-cultures maintained postprandial glucose concentrations in the circulation whereas glucose levels remained elevated in both single cultures. Thus, insulin secreted into the circulation stimulated glucose uptake by the liver spheroids, while the latter, in the absence of insulin, did not consume glucose as efficiently. As the glucose concentration fell, insulin secretion subsided, demonstrating a functional feedback loop between the liver and the insulin-secreting islet microtissues. Finally, inter-laboratory validation verified robustness and reproducibility. Further development of this model using tools inducing impaired glucose regulation should provide a unique in vitro system emulating human type 2 diabetes mellitus.


Assuntos
Técnicas de Cocultura , Diabetes Mellitus Tipo 2/fisiopatologia , Ilhotas Pancreáticas/fisiopatologia , Fígado/fisiopatologia , Esferoides Celulares/fisiologia , Técnicas de Cultura de Tecidos , Linhagem Celular , Técnicas de Cocultura/instrumentação , Meios de Cultura/análise , Diabetes Mellitus Tipo 2/patologia , Desenho de Equipamento , Retroalimentação Fisiológica , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Fígado/patologia , Modelos Biológicos , Reprodutibilidade dos Testes , Esferoides Celulares/patologia , Técnicas de Cultura de Tecidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA