Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847050

RESUMO

Among the various catalysts that can be used for polycondensation reactions, enzymes have been gaining interest for three decades, offering a green and eco-friendly platform towards the sustainable design of renewable polyesters. However, limitations imposed by their delicate nature, render them less addressed. As a case study, we compare herein bulk and solution polycondensation of 1,6-hexanediol and diethyl adipate catalyzed by an immobilized lipase from Candida antarctica. The influence of various parameters including time, temperature, enzyme loading, and vacuum was assessed in the frame of a two-step polymerization with the help of response surface methodology, a statistical technique that investigates relations between input and output variables. Results in solution (diphenyl ether) and bulk conditions showed that a two-hour reaction time was enough to allow adequate oligomer growth for the first step conducted under atmospheric pressure at 100 °C. The number-average molecular weight (Mn) achieved varied between 5000 and 12,000 g·mol-1 after a 24 h reaction and up to 18,500 g∙mol-1 after 48 h. The statistical analysis showed that vacuum was the most influential factor affecting the Mn in diphenyl ether. In sharp contrast, enzyme loading was found to be the most influential parameter in bulk conditions. Recyclability in bulk conditions showed a constant Mn of the polyester over three cycles, while a 17% decrease was noticed in solution. The following work finally introduced a statistical approach that can adequately predict the Mn of poly(hexylene adipate) based on the choice of parameter levels, providing a handy tool in the synthesis of polyesters where the control of molecular weight is of importance.

2.
Macromol Rapid Commun ; 37(20): 1676-1681, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27568984

RESUMO

The synthesis of symmetric cyclo poly(ε-caprolactone)-block-poly(l(d)-lactide) (c(PCL-b-PL(D)LA)) by combining ring-opening polymerization of ε-caprolactone and lactides and subsequent click chemistry reaction of the linear precursors containing antagonist functionalities is presented. The two blocks can sequentially crystallize and self-assemble into double crystalline spherulitic superstructures. The cyclic chain topology significantly affects both the nucleation and the crystallization of each constituent, as gathered from a comparison of the behavior of linear precursors and cyclic block copolymers. The stereochemistry of the PLA block does not have a significant effect on the nonisothermal crystallization of both linear and cyclo PCL-b-PDLA and PCL-b-PLLA copolymers.


Assuntos
Poliésteres/química , Cristalização , Estrutura Molecular , Tamanho da Partícula , Poliésteres/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA