Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 161: 105517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422864

RESUMO

We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.


Assuntos
Iodeto Peroxidase , Estações do Ano , Hormônios Tireóideos , Animais , Masculino , Feminino , Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/metabolismo , Hipotálamo/metabolismo , Tireotropina/metabolismo , Tireotropina/sangue , Reprodução/fisiologia , Iodotironina Desiodinase Tipo II , Temperatura , Fotoperíodo , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiologia , Comportamento Sexual Animal/fisiologia
2.
Brain Behav Evol ; 97(3-4): 167-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220307

RESUMO

An animal's ability to respond optimally to changing environmental conditions is paramount to successfully reproducing and thus maximizing fitness. Studies on photoperiod-induced changes in neural thyroid hormone metabolism have conclusively linked environmental cues to the neuroendocrine reproductive axis of birds and mammals. Whether this conserved mechanism also transduces changes in environmental temperature, however, has not been fully addressed. We investigated whether the hormone melatonin mediates the effects of low-temperature dormancy on thyroid hormone metabolism within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis parietalis). To address this question, we used immunohistochemistry to assess changes in thyroid-stimulating hormone (TSH) in the infundibulum of the pituitary and deiodinase 3 (Dio3) and gonadotropin-releasing hormone (GnRH) in the hypothalamus. We also asked if changes in TSH, Dio3, and/or GnRH immunoreactivity are associated with changes in male courtship behavior. In contrast to our predictions, 6 weeks of dormancy at 4°C significantly decreased the number of TSH-labeled cells in the infundibulum. It is possible that the observed decrease in TSH is related to the release of snakes from temperature refractoriness, but this idea needs further testing. Treatment of snakes with the melatonin precursor 5-hydroxytryptophan during dormancy at 4°C both reversed the temperature-induced change in TSH immunoreactivity and disrupted the temporal pattern of male courtship behavior. These results suggest that TSH cells within the infundibulum are both modulated by temperature and sensitive to changes in melatonin. As predicted, male snakes hibernated at an elevated temperature of 12°C for 6 weeks and treated with vehicle showed no change in TSH-, Dio3-, or GnRH-immunoreactive cell number. Treatment of snakes with the melatonin receptor antagonist luzindole was not sufficient in rescuing the effects of dormancy at 12°C on TSH immunoreactivity or courtship behavior. However, luzindole-treated snakes showed a significant increase in GnRH-immunoreactive cell number, suggesting that melatonin exerts an inhibitory effect on GnRH in garter snakes. In summary, our results provide critical insights into the mechanisms that mediate the effects of temperature on reproductive physiology and behavior.


Assuntos
Colubridae , Melatonina , Animais , Colubridae/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Mamíferos/metabolismo , Melatonina/fisiologia , Comportamento Sexual Animal/fisiologia , Serpentes/metabolismo , Temperatura , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Tireotropina/metabolismo , Tireotropina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA