Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomolecules ; 14(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38785976

RESUMO

Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Tretinoína , Humanos , Feminino , Tretinoína/metabolismo , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Gravidez , Masculino , Predisposição Genética para Doença , Sequenciamento do Exoma
2.
medRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37745357

RESUMO

Background and objectives: Single gene mutations are increasingly recognized as causes of cerebral palsy (CP) phenotypes, yet there is currently no standardized framework for measuring their clinical impact. We evaluated Pathogenic/Likely Pathogenic (P/LP) variants identified in individuals with CP to determine how frequently genetic testing results would prompt changes in care. Methods: We analyzed published P/LP variants in OMIM genes identified in clinical (n = 1,345 individuals) or research (n = 496) cohorts using exome sequencing of CP patients. We established a working group of clinical and research geneticists, developmental pediatricians, genetic counselors, and neurologists and performed a systematic review of existing literature for evidence of clinical management approaches linked to genetic disorders. Scoring rubrics were adapted, and a modified Delphi approach was used to build consensus and establish the anticipated impact on patient care. Overall clinical utility was calculated from metrics assessing outcome severity if left untreated, safety/practicality of the intervention, and anticipated intervention efficacy . Results: We found 140/1,841 (8%) of individuals in published CP cohorts had a genetic diagnosis classified as actionable , defined as prompting a change in clinical management based on knowledge related to the genetic etiology. 58/243 genes with P/LP variants were classified as actionable; 16 had treatment options targeting the primary disease mechanism , 16 had specific prevention strategies , and 26 had specific symptom management recommendations. The level of evidence was also graded according to ClinGen criteria; 44.6% of interventions had evidence class "D" or below. The potential interventions have clinical utility with 97% of outcomes being moderate-high severity if left untreated and 62% of interventions predicted to be of moderate-high efficacy . Most interventions (71%) were considered moderate-high safety/practicality . Discussion: Our findings indicate that actionable genetic findings occur in 8% of individuals referred for genetic testing with CP. Evaluation of potential efficacy , outcome severity , and intervention safety / practicality indicates moderate-high clinical utility of these genetic findings. Thus, genetic sequencing to identify these individuals for precision medicine interventions could improve outcomes and provide clinical benefit to individuals with CP. The relatively limited evidence base for most interventions underscores the need for additional research.

3.
Neuroimage Clin ; 39: 103438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37354865

RESUMO

Childhood stroke occurs from birth to 18 years of age, ranks among the top ten childhood causes of death, and leaves lifelong neurological impairments. Arterial ischemic stroke in infancy and childhood occurs due to arterial occlusion in the brain, resulting in a focal lesion. Our understanding of mechanisms of injury and repair associated with focal injury in the developing brain remains rudimentary. Neuroimaging can reveal important insights into these mechanisms. In adult stroke population, multi-center neuroimaging studies are common and have accelerated the translation process leading to improvements in treatment and outcome. These studies are centered on the growing evidence that neuroimaging measures and other biomarkers (e.g., from blood and cerebrospinal fluid) can enhance our understanding of mechanisms of risk and injury and be used as complementary outcome markers. These factors have yet to be studied in pediatric stroke because most neuroimaging studies in this population have been conducted in single-centred, small cohorts. By pooling neuroimaging data across multiple sites, larger cohorts of patients can significantly boost study feasibility and power in elucidating mechanisms of brain injury, repair and outcomes. These aims are particularly relevant in pediatric stroke because of the decreased incidence rates and the lack of mechanism-targeted trials. Toward these aims, we developed the Pediatric Stroke Neuroimaging Platform (PEDSNIP) in 2015, funded by The Brain Canada Platform Support Grant, to focus on three identified neuroimaging priorities. These were: developing and harmonizing multisite clinical protocols, creating the infrastructure and methods to import, store and organize the large clinical neuroimaging dataset from multiple sites through the International Pediatric Stroke Study (IPSS), and enabling central searchability. To do this, developed a two-pronged approach that included building 1) A Clinical-MRI Data Repository (standard of care imaging) linked to clinical data and longitudinal outcomes and 2) A Research-MRI neuroimaging data set acquired through our extensive collaborative, multi-center, multidisciplinary network. This dataset was collected prospectively in eight North American centers to test the feasibility and implementation of harmonized advanced Research-MRI, with the addition of clinical information, genetic and proteomic studies, in a cohort of children presenting with acute ischemic stroke. Here we describe the process that enabled the development of PEDSNIP built to provide the infrastructure to support neuroimaging research priorities in pediatric stroke. Having built this Platform, we are now able to utilize the largest neuroimaging and clinical data pool on pediatric stroke data worldwide to conduct hypothesis-driven research. We are actively working on a bioinformatics approach to develop predictive models of risk, injury and repair and accelerate breakthrough discoveries leading to mechanism-targeted treatments that improve outcomes and minimize the burden following childhood stroke. This unique transformational resource for scientists and researchers has the potential to result in a paradigm shift in the management, outcomes and quality of life in children with stroke and their families, with far-reaching benefits for other brain conditions of people across the lifespan.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Adulto , Criança , Humanos , Proteômica , Qualidade de Vida , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Neuroimagem
4.
Hum Mol Genet ; 32(15): 2411-2421, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37154571

RESUMO

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Humanos , Criança , Saúde Mental , Variações do Número de Cópias de DNA/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dosagem de Genes
5.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674384

RESUMO

We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.


Assuntos
COVID-19 , Mustelidae , Animais , Cromossomos , Genômica , Humanos , Masculino , Mustelidae/genética , América do Norte
6.
Genes (Basel) ; 13(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35205252

RESUMO

Rare post-zygotic mutations in the brain are now known to contribute to several neurodevelopmental disorders, including autism spectrum disorder (ASD). However, due to the limited availability of brain tissue, most studies rely on estimates of mosaicism from peripheral samples. In this study, we undertook whole exome sequencing on brain tissue from 26 ASD brain donors from the Harvard Brain Tissue Resource Center (HBTRC) and ascertained the presence of post-zygotic and germline mutations categorized as pathological, including those impacting known ASD-implicated genes. Although quantification did not reveal enrichment for post-zygotic mutations compared with the controls (n = 15), a small number of pathogenic, potentially ASD-implicated mutations were identified, notably in TRAK1 and CLSTN3. Furthermore, germline mutations were identified in the same tissue samples in several key ASD genes, including PTEN, SC1A, CDH13, and CACNA1C. The establishment of tissue resources that are available to the scientific community will facilitate the discovery of new mutations for ASD and other neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Predisposição Genética para Doença , Humanos , Proteínas de Membrana/genética , Mutação , Sequenciamento do Exoma
7.
Front Genet ; 11: 612515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335541

RESUMO

Population sequencing often requires collaboration across a distributed network of sequencing centers for the timely processing of thousands of samples. In such massive efforts, it is important that participating scientists can be confident that the accuracy of the sequence data produced is not affected by which center generates the data. A study was conducted across three established sequencing centers, located in Montreal, Toronto, and Vancouver, constituting Canada's Genomics Enterprise (www.cgen.ca). Whole genome sequencing was performed at each center, on three genomic DNA replicates from three well-characterized cell lines. Secondary analysis pipelines employed by each site were applied to sequence data from each of the sites, resulting in three datasets for each of four variables (cell line, replicate, sequencing center, and analysis pipeline), for a total of 81 datasets. These datasets were each assessed according to multiple quality metrics including concordance with benchmark variant truth sets to assess consistent quality across all three conditions for each variable. Three-way concordance analysis of variants across conditions for each variable was performed. Our results showed that the variant concordance between datasets differing only by sequencing center was similar to the concordance for datasets differing only by replicate, using the same analysis pipeline. We also showed that the statistically significant differences between datasets result from the analysis pipeline used, which can be unified and updated as new approaches become available. We conclude that genome sequencing projects can rely on the quality and reproducibility of aggregate data generated across a network of distributed sites.

8.
Rheumatology (Oxford) ; 59(5): 1066-1075, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321162

RESUMO

OBJECTIVE: To identify discrete clusters comprising clinical features and inflammatory biomarkers in children with JIA and to determine cluster alignment with JIA categories. METHODS: A Canadian prospective inception cohort comprising 150 children with JIA was evaluated at baseline (visit 1) and after six months (visit 2). Data included clinical manifestations and inflammation-related biomarkers. Probabilistic principal component analysis identified sets of composite variables, or principal components, from 191 original variables. To discern new clinical-biomarker clusters (clusters), Gaussian mixture models were fit to the data. Newly-defined clusters and JIA categories were compared. Agreement between the two was assessed using Kruskal-Wallis analyses and contingency plots. RESULTS: Three principal components recovered 35% (three clusters) and 40% (five clusters) of the variance in patient profiles in visits 1 and 2, respectively. None of the clusters aligned precisely with any of the seven JIA categories but rather spanned multiple categories. Results demonstrated that the newly defined clinical-biomarker lustres are more homogeneous than JIA categories. CONCLUSION: Applying unsupervised data mining to clinical and inflammatory biomarker data discerns discrete clusters that intersect multiple JIA categories. Results suggest that certain groups of patients within different JIA categories are more aligned pathobiologically than their separate clinical categorizations suggest. Applying data mining analyses to complex datasets can generate insights into JIA pathogenesis and could contribute to biologically based refinements in JIA classification.


Assuntos
Artrite Juvenil/sangue , Artrite Juvenil/fisiopatologia , Mediadores da Inflamação/sangue , Adolescente , Fatores Etários , Artrite Juvenil/epidemiologia , Biomarcadores/sangue , Canadá/epidemiologia , Criança , Análise por Conglomerados , Estudos de Coortes , Mineração de Dados , Feminino , Humanos , Incidência , Masculino , Distribuição Normal , Estudos Prospectivos , Medição de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Síndrome
9.
Bioinformatics ; 36(4): 1283-1285, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580400

RESUMO

SUMMARY: Integration of next generation sequencing data (NGS) across different research studies can improve the power of genetic association testing by increasing sample size and can obviate the need for sequencing controls. If differential genotype uncertainty across studies is not accounted for, combining datasets can produce spurious association results. We developed the Variant Integration Kit for NGS (VikNGS), a fast cross-platform software package, to enable aggregation of several datasets for rare and common variant genetic association analysis of quantitative and binary traits with covariate adjustment. VikNGS also includes a graphical user interface, power simulation functionality and data visualization tools. AVAILABILITY AND IMPLEMENTATION: The VikNGS package can be downloaded at http://www.tcag.ca/tools/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Visualização de Dados , Genótipo , Fenótipo
10.
NPJ Genom Med ; 4: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602316

RESUMO

Copy number variations (CNVs) are implicated across many neurodevelopmental disorders (NDDs) and contribute to their shared genetic etiology. Multiple studies have attempted to identify shared etiology among NDDs, but this is the first genome-wide CNV analysis across autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), and obsessive-compulsive disorder (OCD) at once. Using microarray (Affymetrix CytoScan HD), we genotyped 2,691 subjects diagnosed with an NDD (204 SCZ, 1,838 ASD, 427 ADHD and 222 OCD) and 1,769 family members, mainly parents. We identified rare CNVs, defined as those found in <0.1% of 10,851 population control samples. We found clinically relevant CNVs (broadly defined) in 284 (10.5%) of total subjects, including 22 (10.8%) among subjects with SCZ, 209 (11.4%) with ASD, 40 (9.4%) with ADHD, and 13 (5.6%) with OCD. Among all NDD subjects, we identified 17 (0.63%) with aneuploidies and 115 (4.3%) with known genomic disorder variants. We searched further for genes impacted by different CNVs in multiple disorders. Examples of NDD-associated genes linked across more than one disorder (listed in order of occurrence frequency) are NRXN1, SEH1L, LDLRAD4, GNAL, GNG13, MKRN1, DCTN2, KNDC1, PCMTD2, KIF5A, SYNM, and long non-coding RNAs: AK127244 and PTCHD1-AS. We demonstrated that CNVs impacting the same genes could potentially contribute to the etiology of multiple NDDs. The CNVs identified will serve as a useful resource for both research and diagnostic laboratories for prioritization of variants.

11.
J Child Neurol ; 34(8): 472-476, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30963790

RESUMO

High throughput sequencing is discovering many likely causative genetic variants in individuals with cerebral palsy. Some investigators have suggested that this changes the clinical diagnosis of cerebral palsy and that these individuals should be removed from this diagnostic category. Cerebral palsy is a neurodevelopmental disorder diagnosed on clinical signs, not etiology. All nonprogressive permanent disorders of movement and posture attributed to disturbances that occurred in the developing fetal and infant brain can be described as "cerebral palsy." This definition of cerebral palsy should not be changed, whatever the cause. Reasons include stability, utility and accuracy of cerebral palsy registers, direct access to services, financial and social support specifically offered to families with cerebral palsy, and community understanding of the clinical diagnosis. Other neurodevelopmental disorders, for example, epilepsy, have not changed the diagnosis when genomic causes are found. The clinical diagnosis of cerebral palsy should remain, should prompt appropriate genetic studies and can subsequently be subclassified by etiology.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/etiologia , Paralisia Cerebral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
12.
Biochem Cell Biol ; 96(2): 161-166, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29533680

RESUMO

Fetal alcohol spectrum disorder (FASD) is characterized by a combination of neurological, developmental, and congenital defects that may occur as a consequence of prenatal alcohol exposure. Earlier reports showed that large chromosomal anomalies may link to FASD. Here, we examined the prevalence and types of copy number variations (CNVs) in FASD cases previously diagnosed by a multidisciplinary FASD team in sites across Canada. We genotyped 95 children with FASD and 87 age-matched, typically developing controls on the Illumina Human Omni2.5 SNP (single nucleotide polymorphisms) array platform. We compared their CNVs with those of 10 851 population controls to identify rare CNVs (<0.1% frequency), which may include large unbalanced chromosomal abnormalities, that might be relevant to FASD. In 12/95 (13%) of the FASD cases, rare CNVs were found that impact potentially clinically relevant developmental genes, including the CACNA1H involved in epilepsy and autism, the 3q29 deletion disorder, and others. Our results show that a subset of children diagnosed with FASD have chromosomal deletions and duplications that may co-occur or explain the neurodevelopmental impairments in a diagnosed cohort of FASD individuals. Children suspected to have FASD with or without sentinel facial features of fetal alcohol syndrome and neurodevelopmental delays should potentially be evaluated by a clinical geneticist and possibly have genetic investigations as appropriate to exclude other etiologies.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Transtornos do Espectro Alcoólico Fetal/genética , Dosagem de Genes , Polimorfismo de Nucleotídeo Único , Criança , Pré-Escolar , Feminino , Humanos , Masculino
13.
CMAJ ; 190(5): E126-E136, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431110

RESUMO

BACKGROUND: The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. METHODS: Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. RESULTS: Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set (n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. INTERPRETATION: Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Canadá , Feminino , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Humanos , Masculino
15.
Genet Med ; 20(2): 172-180, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28771244

RESUMO

PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Hemiplegia/diagnóstico , Hemiplegia/genética , Fenótipo , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Estudos Transversais , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Neuroimagem/métodos , Linhagem , Estudos Retrospectivos , Fatores de Risco , Sequenciamento do Exoma
16.
G3 (Bethesda) ; 7(2): 755-773, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28087693

RESUMO

The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon-gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.


Assuntos
Genoma , Roedores/genética , Transcriptoma/genética , Animais , Genômica , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética
17.
Nat Commun ; 6: 7949, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26236009

RESUMO

Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (∼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families.


Assuntos
Paralisia Cerebral/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Pais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Estudos Prospectivos
18.
BMC Genomics ; 16 Suppl 1: S12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923536

RESUMO

BACKGROUND: We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants. RESULTS: Whole-exome sequencing and genome-wide homozygosity mapping revealed a previously reported frameshift mutation in the OBSL1 gene (c.1273insA p.T425nfsX40), consistent with a diagnosis of 3-M Syndrome 2 (OMIM #612921), which had not been anticipated from the clinical findings. CONCLUSIONS: Our study provides novel insight into the early clinical manifestations of this form of 3-M syndrome, and demonstrates the utility of whole exome sequencing as a tool for prenatal diagnosis in particular when there is a family history suggestive of a recurrent set of clinical symptoms.


Assuntos
Autopsia , Proteínas do Citoesqueleto/genética , Nanismo/diagnóstico , Nanismo/genética , Feto/metabolismo , Mutação da Fase de Leitura/genética , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Coluna Vertebral/anormalidades , Análise Mutacional de DNA , Exoma , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Gravidez
19.
Genet Med ; 17(9): 747-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25503493

RESUMO

PURPOSE: Chromosomal microarray analysis to assess copy-number variation has become a first-tier genetic diagnostic test for individuals with unexplained neurodevelopmental disorders or multiple congenital anomalies. More than 100 cytogenetic laboratories worldwide use the new ultra-high resolution Affymetrix CytoScan-HD array to genotype hundreds of thousands of samples per year. Our aim was to develop a copy-number variation resource from a new population sample that would enable more accurate interpretation of clinical genetics data on this microarray platform and others. METHODS: Genotyping of 1,000 adult volunteers who are broadly representative of the Ontario population (as obtained from the Ontario Population Genomics Platform) was performed with the CytoScan-HD microarray system, which has 2.7 million probes. Four independent algorithms were applied to detect copy-number variations. Reproducibility and validation metrics were quantified using sample replicates and quantitative-polymerase chain reaction, respectively. RESULTS: DNA from 873 individuals passed quality control and we identified 71,178 copy-number variations (81 copy-number variations/individual); 9.8% (6,984) of these copy-number variations were previously unreported. After applying three layers of filtering criteria, from our highest confidence copy-number variation data set we obtained >95% reproducibility and >90% validation rates (73% of these copy-number variations overlapped at least one gene). CONCLUSION: The genotype data and annotated copy-number variations for this largely Caucasian population will represent a valuable public resource enabling clinical genetics research and diagnostics.


Assuntos
Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Genética Populacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Cromossomos , Anormalidades Congênitas/genética , Curadoria de Dados , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Reprodutibilidade dos Testes
20.
Am J Hum Genet ; 94(6): 809-17, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906018

RESUMO

Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.


Assuntos
Estudos de Associação Genética/métodos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sociedades Científicas/organização & administração , Canadá , Humanos , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA