Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38005837

RESUMO

In the past decade, severe epidemics of cucumber mosaic virus (CMV) have caused significant damage to Espelette pepper crops. This virus threatens the production of Espelette pepper, which plays a significant role in the local economy and touristic attractiveness of the French Basque Country, located in southwestern France. In 2021 and 2022, CMV was detected via double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) in Gorria pepper seed lots harvested from naturally infected fields scattered throughout the entire Espelette pepper production area. These seed lots were used in greenhouse grow-out tests to determine whether CMV could be transmitted to seedlings from contaminated seeds, using visual symptom assessment, DAS-ELISAs, and reverse transcription-polymerase chain reaction (RT-PCR). Despite the widespread occurrence of CMV in seeds of field samples, the grow-out experiments on a total of over 5000 seedlings yielded no evidence of seed transmission of local CMV isolates in Gorria pepper. Therefore, rather than seeds from infected pepper plants, sources of CMV inoculum in Espelette are more likely to be alternative hosts present in and around pepper fields that can allow for the survival of CMV during the off-season. These results have important epidemiological implications and will guide the choice of effective measures to control current epidemics.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Cucumovirus/genética , Sementes , Produtos Agrícolas , França/epidemiologia
2.
Plant Dis ; 106(11): 2797-2807, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35394335

RESUMO

Application of high throughput sequencing (HTS) technologies enabled the first identification of Physostegia chlorotic mottle virus (PhCMoV) in 2018 in Austria. Subsequently, PhCMoV was detected in Germany and Serbia on tomatoes showing severe fruit mottling and ripening anomalies. We report here how prepublication data-sharing resulted in an international collaboration across eight laboratories in five countries, enabling an in-depth characterization of PhCMoV. The independent studies converged toward its recent identification in eight additional European countries and confirmed its presence in samples collected 20 years ago (2002). The natural plant host range was expanded from two to nine species across seven families, and we confirmed the association of PhCMoV presence with severe fruit symptoms on economically important crops such as tomato, eggplant, and cucumber. Mechanical inoculations of selected isolates in the greenhouse established the causality of the symptoms on a new indexing host range. In addition, phylogenetic analysis showed a low genomic variation across the 29 near-complete genome sequences available. Furthermore, a strong selection pressure within a specific ecosystem was suggested by nearly identical sequences recovered from different host plants through time. Overall, this study describes the European distribution of PhCMoV on multiple plant hosts, including economically important crops on which the virus can cause severe fruit symptoms. This work demonstrates how to efficiently improve knowledge on an emergent pathogen by sharing HTS data and provides a solid knowledge foundation for further studies on plant rhabdoviruses.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Especificidade de Hospedeiro , Solanum lycopersicum , Filogenia , Doenças das Plantas , Ecossistema , Sérvia
3.
Phytopathology ; 112(5): 1185-1191, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34752138

RESUMO

Cucumber vein yellowing virus (CVYV) is an emerging virus on cucurbits in the Mediterranean Basin, against which few resistance sources are available, particularly in melon. The melon accession PI 164323 displays complete resistance to isolate CVYV-Esp, and accession HSD 2458 presents a tolerance, i.e., very mild symptoms despite virus accumulation in inoculated plants. The resistance is controlled by a dominant allele Cvy-11, while the tolerance is controlled by a recessive allele cvy-2, independent from Cvy-11. Before introducing the resistance or tolerance in commercial cultivars through a long breeding process, it is important to estimate their specificity and durability. Upon inoculation with eight molecularly diverse CVYV isolates, the resistance was found to be isolate-specific because many CVYV isolates induced necrosis on PI 164323, whereas the tolerance presented a broader range. A resistance-breaking isolate inducing severe mosaic on PI 164323 was obtained. This isolate differed from the parental strain by a single amino acid change in the VPg coding region. An infectious CVYV cDNA clone was obtained, and the effect of the mutation in the VPg cistron on resistance to PI 164323 was confirmed by reverse genetics. This represents the first determinant for resistance-breaking in an ipomovirus. Our results indicate that the use of the Cvy-11 allele alone will not provide durable resistance to CVYV and that, if used in the field, it should be combined with other control methods such as cultural practices and pyramiding of resistance genes to achieve long-lasting resistance against CVYV.


Assuntos
Cucumis sativus , Cucurbitaceae , Cucurbitaceae/genética , Mutação , Melhoramento Vegetal , Doenças das Plantas , Potyviridae
4.
Viruses ; 12(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825227

RESUMO

Aphid-borne viruses are frequent yield-limiting pathogens in open field vegetable crops. In the absence of curative methods, virus control relies exclusively on measures limiting virus introduction and spread. The efficiency of control measures may greatly benefit from an accurate knowledge of epidemic drivers, in particular those linked with aphid vectors. Field experiments were conducted in southeastern France between 2010 and 2019 to investigate the relationship between the epidemics of cucurbit aphid-borne yellows virus (CABYV) and aphid vector abundance. Winged aphids visiting melon crops were sampled daily to assess the abundance of CABYV vectors (Aphis gossypii, Macrosiphum euphorbiae and Myzus persicae) and CABYV was monitored weekly by DAS-ELISA. Epidemic temporal progress curves were successfully described by logistic models. A systematic search for correlations was undertaken between virus variables including parameters µ (inflection point of the logistic curve) and γ (maximum incidence) and aphid variables computed by aggregating abundances on periods relative either to the planting date, or to the epidemic peak. The abundance of A. gossypii during the first two weeks after planting was found to be a good predictor of CABYV dynamics, suggesting that an early control of this aphid species could mitigate the onset and progress of CABYV epidemics in melon crops.


Assuntos
Afídeos/virologia , Cucurbitaceae/virologia , Insetos Vetores/virologia , Luteoviridae/fisiologia , Doenças das Plantas/virologia , Animais , Afídeos/fisiologia , Cucurbitaceae/parasitologia , Epidemias , Insetos Vetores/fisiologia , Luteoviridae/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos
5.
Virus Res ; 286: 198042, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504705

RESUMO

Plant viral diseases represent a significant burden to plant health, and their highest impact in Mediterranean agriculture is on vegetables grown under intensive horticultural practices. In order to understand better virus evolution and emergence, the most prevalent viruses were mapped in the main cucurbitaceous (melon, squashes) and solanaceous (tomato, pepper) crops and in some wild hosts in the French Mediterranean area, and virus diversity, evolution and population structure were studied through molecular epidemiology approaches. Surveys were performed in summer 2016 and 2017, representing a total of 1530 crop samples and 280 weed samples. The plant samples were analysed using serological and molecular approaches, including high-throughput sequencing (HTS). The viral species and their frequency in crops were quite similar to those of surveys conducted ten years before in the same areas. Contrary to other Mediterranean countries, aphid-transmitted viruses remain the most prevalent in France whereas whitefly-transmitted ones have not yet emerged. However, HTS analysis of viral evolution revealed the appearance of undescribed viral variants, especially for watermelon mosaic virus (WMV) in cucurbits, or variants not present in France before, as for cucumber mosaic virus (CMV) in solanaceous crops. Deep sequencing also revealed complex virus populations within individual plants with frequent recombination or reassortment. The spatial genetic structure of cucurbit aphid-borne yellows virus (CABYV) was related to the landscape structure, whereas in the case of WMV, the recurrence of introduction events and probable human exchanges of plant material resulted in complex spatial pattern of genetic variation.


Assuntos
Cucurbita/virologia , Evolução Molecular , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Vírus/genética , Animais , Afídeos/virologia , Produtos Agrícolas/virologia , França , Insetos Vetores/virologia , Região do Mediterrâneo , Filogenia , Vírus Reordenados/genética , Recombinação Genética , Vírus/classificação
6.
Plant Dis ; 103(11): 2913-2919, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31436474

RESUMO

Thirty-one melon accessions were screened for resistance to the begomoviruses Melon chlorotic mosaic virus (MeCMV) and Tomato leaf curl New Delhi virus (ToLCNDV). Five accessions presented nearly complete resistance to both viruses. Accession IC-274014, showing the highest level of resistance to both viruses, was crossed with the susceptible cultivar Védrantais. The F1, F2, F3/F4, and both backcross progenies were mechanically inoculated with MeCMV. Plants without symptoms or virus detection by enzyme-linked immunosorbent assay and/or PCR were considered as resistant. The segregations were compatible with two recessive and one dominant independent genes simultaneously required for resistance. Inheritance of resistance to ToLCNDV in the F2 was best explained by one recessive gene and two independent dominant genes simultaneously required. Some F3 and F4 families selected for resistance to MeCMV also were resistant to ToLCNDV, suggesting that common or tightly linked genes were involved in resistance to both viruses. We propose the names begomovirus resistance-1 and Begomovirus resistance-2 for these genes (symbols bgm-1 and Bgm-2). Resistance to MeCMV in IC-274014 was controlled by bgm-1, Bgm-2, and the recessive gene melon chlorotic mosaic virus resistance (mecmv); resistance to ToLCNDV was controlled by bgm-1, Bgm-2, and the dominant gene Tomato leaf curl New Delhi virus resistance (Tolcndv).


Assuntos
Begomovirus , Cucurbitaceae , Resistência à Doença , Begomovirus/fisiologia , Cucurbitaceae/virologia , Resistência à Doença/genética
7.
Virus Res ; 241: 105-115, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28587865

RESUMO

Cultivar choice is at the heart of cropping systems and resistant cultivars should be at the heart of disease management strategies whenever available. They are the easiest, most efficient and environmentally friendly way of combating viral diseases at the farm level. Among the melon genetic resources, Vat is a unique gene conferring resistance to both the melon aphid Aphis gossypii and the viruses it carries. The 'virus side' of this pleiotropic phenotype is seldom regarded as an asset for virus control. Indeed, the effect of Vat on virus epidemics in the field is expected to vary according to the composition of aphid populations in the environment and long-term studies are needed to draw a correct trend. Therefore, the first objective of the study was to re-evaluate the potential of Vat to reduce viral diseases in melon crops. The second objective was to investigate the potential of Vat to exert a selection pressure on virus populations. We monitored the epidemics of Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV) in two melon lines having a common genetic background, a resistant line (R) and a susceptible line (S), in eight field trials conducted in southeastern France between 2011 and 2015. Vat had limited impact if any on WMV epidemics probably because A. gossypii is not the main vector of WMV in the field, but a favorable impact on CMV, yet of variable intensity probably related to the importance of A. gossypii in the total aphid population. Vat had a significant impact on CABYV epidemics with mean incidence reduction exceeding 50% in some trials. There was no effect of Vat on the structure of virus populations, both for the non-persistent WMV transmitted by numerous aphid species and for the persistent CABYV transmitted predominantly by A. gossypii.


Assuntos
Afídeos/virologia , Cucumovirus/crescimento & desenvolvimento , Cucurbitaceae/virologia , Resistência à Doença/genética , Luteoviridae/crescimento & desenvolvimento , Doenças das Plantas/virologia , Potyvirus/crescimento & desenvolvimento , Animais , França , Insetos Vetores/virologia , Proteínas de Plantas/genética
8.
Virus Res ; 241: 19-28, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576697

RESUMO

Ornamental plants constitute a largely unknown and potentially important source of pathogens affecting not only ornamental plants, but also major crop species. We have carried out studies using high-throughput sequencing of 21-24 nt RNAs from potentially virus-infected ornamental plants, followed by assembly of sequence scaffolds, to identify the virus and viroid genomes present in a panel of 67 plant samples representing 46 species belonging to the main sectors of the ornamental plant industry (cut flowers, pot plants, bulbs). A pilot study demonstrated that samples could be pooled (5 samples per pool), and the overall process simplified without loss of detection of important known pathogens. In a full-scale study, pools of 5 samples were organized in a 5×5 matrix to facilitate attribution of a sequence to a precise sample directly from analysis of the matrix. In the total of 67 samples analyzed in the two studies, partial sequences suggesting the presence of 25 previously unknown viruses and viroids were detected, including all types of virus and viroid genomes, and also showed four cases of known viruses infecting previously undescribed hosts. Furthermore, two types of potential mis-assembly were analyzed, and were shown to not affect the conclusions regarding the presence of the pathogens identified, but show that mis-assembly can affect the results when the objective is determining complete bona fide viral genome sequences. These results clearly confirm that ornamental plants constitute a potential source of unknown viruses and viroids that could have a major impact on agriculture, and that sequencing siRNAs of potentially virus- or viroid-infected ornamental plants is an effective means for screening for the presence of potentially important pathogens.


Assuntos
Genoma Viral/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA Interferente Pequeno/genética , Viroides/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/virologia , Análise de Sequência de RNA
9.
Arch Virol ; 161(10): 2913-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27430562

RESUMO

Two members of the genus Ipomovirus (family Potyviridae) are known to infect cucurbits: cucumber vein yellowing virus (CVYV), which is emerging throughout the Mediterranean Basin, and squash vein yellowing virus (SqVYV), which has been described in America and the Caribbean Basin, and more recently in Israel. In this work, an ipomovirus different from CVYV and SqVYV, tentatively named coccinia mottle virus (CocMoV), was detected in a sample of the cucurbit Coccinia grandis collected in central Sudan in 2012. Sequence identity in nt was 68 % with CVYV, 59-60 % with SqVYV, cassava brown streak virus and Ugandan cassava brown streak virus, and less than 50 % with other members of the family Potyviridae. Preliminary biological and epidemiological studies indicate that CocMoV has a narrow natural host range and a low prevalence.


Assuntos
Cucurbitaceae/virologia , Genoma Viral , Potyviridae/genética , RNA Viral/genética , Análise de Sequência de DNA , Análise por Conglomerados , Especificidade de Hospedeiro , Filogenia , Doenças das Plantas/virologia , Potyviridae/isolamento & purificação , Potyviridae/fisiologia , Prevalência , Homologia de Sequência , Sudão
10.
Plant Dis ; 95(2): 153-157, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30743409

RESUMO

A virus isolate (Su-95-67) was obtained from a snake melon (Cucumis melo var. flexuosus) plant presenting severe chlorotic spots, mosaic, stunting, and leaf deformations collected in Eastern Sudan in 1995. Su-95-67 was easily mechanically transmissible and had a host range limited to a few cucurbit species. Isometric virus particles approximately 30 nm in diameter were observed in leaf dip preparations. A cytopathological study did not reveal alterations specific for a virus genus or family. A polyclonal antiserum was obtained and used in double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Su-95-67 was transmitted by seed at a low rate, by the red melon beetle (Aulacophora foveicollis), but not by the melon aphid (Aphis gossypii). Because Su-95-67 shared several properties with sobemoviruses, generic Sobemovirus reverse-transcription polymerase chain reaction primers were developed. They allowed amplification of a 384-bp fragment from extracts of plants infected by two sobemoviruses or by Su-95-67 but not from healthy plants extracts. Sequence comparison confirmed that Su-95-67 belongs to a new tentative Sobemovirus species for which we propose the name Snake melon asteroid mosaic virus (SMAMV). DAS-ELISA tests conducted on extracts of virus-infected cucurbit plants collected from 1992 to 2003 revealed the presence of SMAMV in 10.2% of 600 samples originating from different regions of Sudan.

11.
Plant Dis ; 87(8): 955-959, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30812802

RESUMO

Papaya ringspot virus (PRSV) and Zucchini yellow mosaic virus(ZYMV) are potyviruses frequently reported in cucurbits in Mediterranean, subtropical, and tropical regions. Occasionally, epidemics are also observed in more temperate regions, but the ways these viruses are introduced into new areas are not yet fully determined. We investigated the possibility that infected imported melon fruit could be a route for the introduction of PRSV and ZYMV. Imported melon fruits of the yellow canary type infected by ZYMV and PRSV were exposed in the fields next to healthy melon or squash bait plants. During this period, aphids were observed landing and probing on the fruits. In four independent experiments using different fruits, 3.1 to 25% of bait plants were infected by ZYMV and/or PRSV. PRSV was more frequently transmitted to bait plants than ZYMV. Comparison of partial sequences of the isolates from fruits and from bait plants showed a very high, if not complete, identity within each experiment, confirming that a natural transmission did occur from the fruit to the bait plants. These results suggest that globalization of melon production and international trade may be a factor in the spread of cucurbit potyviruses between countries or continents.

12.
Plant Dis ; 85(5): 547-552, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-30823134

RESUMO

A potyvirus (Su-94-54) was isolated from a naturally infected snake cucumber (Cucumis melo var. flexuosus) plant with severe mosaic and leaf deformation symptoms collected in Eastern Sudan. This isolate has a host range limited to cucurbits and is serologically distantly related to Moroccan watermelon mosaic virus (MWMV) and to Papaya ringspot virus (PRSV). Coat protein sequence analysis of Su-94-54 and MWMV and comparison with other potyviruses indicate that Su-94-54 is more closely related to MWMV than to any other potyvirus. Based on the amino acid sequence identity in the core part of the coat protein with MWMV (86%), this isolate could be regarded as a distinct species. However, because of biological, cytological, and serological affinities with MWMV, we propose that this isolate be considered as a strain of MWMV, possibly an evolutionary intermediate between MWMV and PRSV, until more is known on the structure of the PRSV subgroup within the genus Potyvirus.

13.
Plant Dis ; 81(6): 656-660, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30861853

RESUMO

Melon rugose mosaic virus (MRMV) was isolated from snake cucumber (Cucumis melo var. flexuosus) in the Kassala region of Sudan in 1993. The host range of the virus was mostly limited to cucurbits, where it induced severe mosaic and leaf deformations. Cytopathological studies revealed severe chloroplast alterations, including vesicles at their periphery and the tendency to aggregate, which are typical of tymovirus infections, providing further evidence that MRMV is a tentative member of the genus Tymovirus. In melon and snake cucumber, MRMV was found to be seed transmitted at rates of 0.9 and 3.8%, respectively. Seed dissection experiments revealed that the virus could be detected in the seed coat, papery layer, and embryo. Seed disinfection treatments did not reduce seed transmission rates, which suggests an internal transmission. A preliminary screening for resistance in melon revealed some resistance in two out of 367 accessions tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA