Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(10): e10580, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818248

RESUMO

The Eltonian niche of a species is defined as its set of interactions with other taxa. How this set varies with biotic, abiotic and human influences is a core question of modern ecology. In seasonal environments, the realized Eltonian niche is likely to vary due to periodic changes in the occurrence and abundance of interaction partners and changes in species behavior and preferences. Also, human management decisions may leave strong imprints on species interactions. To compare the impact of seasonality to that of management effects, honeybees provide an excellent model system. Based on DNA traces of interaction partners archived in honey, we can infer honeybee interactions with floral resources and microbes in the surrounding habitats, their hives, and themselves. Here, we resolved seasonal and management-based impacts on honeybee interactions by sampling beehives repeatedly during the honey-storing period of honeybees in Finland. We then use a genome-skimming approach to identify the taxonomic contents of the DNA in the samples. To compare the effects of the season to the effects of location, management, and the colony itself in shaping honeybee interactions, we used joint species distribution modeling. We found that honeybee interactions with other taxa varied greatly among taxonomic and functional groups. Against a backdrop of wide variation in the interactions documented in the DNA content of honey from bees from different hives, regions, and beekeepers, the imprint of the season remained relatively small. Overall, a honey-based approach offers unique insights into seasonal variation in the identity and abundance of interaction partners among honeybees. During the summer, the availability and use of different interaction partners changed substantially, but hive- and taxon-specific patterns were largely idiosyncratic as modified by hive management. Thus, the beekeeper and colony identity are as important determinants of the honeybee's realized Eltonian niche as is seasonality.

2.
Sci Rep ; 13(1): 14753, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679501

RESUMO

Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.


Assuntos
Mel , Magnoliopsida , Abelhas , Animais , Néctar de Plantas , Código de Barras de DNA Taxonômico , Pólen , DNA
3.
Ecol Monogr ; 93(1): e1551, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37035419

RESUMO

Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming-associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.

4.
Front Vet Sci ; 10: 1129701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923051

RESUMO

Honeybees are major pollinators for our food crops, but at the same time they face many stressors all over the world. One of the major threats to honeybee health are bacterial diseases, the most severe of which is the American Foulbrood (AFB). Recently a trans-generational vaccination approach against AFB has been proposed, showing strong potential in protecting the colonies from AFB outbreaks. Yet, what remains unstudied is whether the priming of the colony has any undesired side-effects. It is widely accepted that immune function is often a trade-off against other life-history traits, hence immune priming could have an effect on the colony performance. In this experiment we set up 48 hives, half of them with primed queens and half of them as controls. The hives were placed in six apiaries, located as pair of apiaries in three regions. Through a 2-year study we monitored the hives and measured their health and performance. We measured hive weight and frame contents such as brood amount, worker numbers, and honey yield. We studied the prevalence of the most common honeybee pathogens in the hives and expression of relevant immune genes in the offspring at larval stage. No effect of trans-generational immune priming on any of the hive parameters was found. Instead, we did find other factors contributing on various hive performance parameters. Interestingly not only time but also the region, although only 10 km apart from each other, had an effect on the performance and health of the colonies, suggesting that the local environment plays an important role in hive performance. Our results suggest that exploiting the trans-generational priming could serve as a safe tool in fighting the AFB in apiaries.

5.
J Fungi (Basel) ; 8(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354890

RESUMO

Colletotrichum species are among the most devastating plant pathogens in a wide range of hosts. Their accurate identification requires a polyphasic approach, including geographical, ecological, morphological, and genetic data. Solanaceous crops are of significant economic importance for Bulgarian agriculture. Colletotrichum-associated diseases pose a serious threat to the yield and quality of production but are still largely unexplored. The aim of this study was to identify and characterize 26 pathogenic Colletotrichum isolates that threaten solanaceous crops based on morphological, pathogenic, and molecular data. DNA barcodes enabled the discrimination of three main taxonomic groups: C. acutatum, C. gloeosporioides, and C. coccodes. Three different species of acutatum complex (C. nymphaeae, C. godetiae, and C. salicis) and C. cigarro of the gloeosporioides complex were associated with fruit anthracnose in peppers and tomatoes. The C. coccodes group was divided in two clades: C. nigrum, isolated predominantly from fruits, and C. coccodes, isolated mainly from roots. Only C. salicis and C. cigarro produced sexual morphs. The species C. godetiae, C. salicis, and C. cigarro have not previously been reported in Bulgaria. Our results enrich the knowledge of the biodiversity and specific features of Colletotrichum species, which are pathogenic to solanaceous hosts, and may serve as a scientific platform for efficient disease control and resistance breeding.

6.
PLoS One ; 17(7): e0268250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830374

RESUMO

To assess a species' impact on its environment-and the environment's impact upon a species-we need to pinpoint its links to surrounding taxa. The honeybee (Apis mellifera) provides a promising model system for such an exercise. While pollination is an important ecosystem service, recent studies suggest that honeybees can also provide disservices. Developing a comprehensive understanding of the full suite of services and disservices that honeybees provide is a key priority for such a ubiquitous species. In this perspective paper, we propose that the DNA contents of honey can be used to establish the honeybee's functional niche, as reflected by ecosystem services and disservices. Drawing upon previously published genomic data, we analysed the DNA found within 43 honey samples from Northern Europe. Based on metagenomic analysis, we find that the taxonomic composition of DNA is dominated by a low pathogenicity bee virus with 40.2% of the reads, followed by bacteria (16.7%), plants (9.4%) and only 1.1% from fungi. In terms of ecological roles of taxa associated with the bees or taxa in their environment, bee gut microbes dominate the honey DNA, with plants as the second most abundant group. A range of pathogens associated with plants, bees and other animals occur frequently, but with lower relative read abundance, across the samples. The associations found here reflect a versatile the honeybee's role in the North-European ecosystem. Feeding on nectar and pollen, the honeybee interacts with plants-in particular with cultivated crops. In doing so, the honeybee appears to disperse common pathogens of plants, pollinators and other animals, but also microbes potentially protective of these pathogens. Thus, honey-borne DNA helps us define the honeybee's functional niche, offering directions to expound the benefits and drawbacks of the associations to the honeybee itself and its interacting organisms.


Assuntos
Mel , Animais , Abelhas/genética , DNA , Ecossistema , Néctar de Plantas , Polinização
7.
Sci Rep ; 11(1): 4798, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637887

RESUMO

The regional origin of a food product commonly affects its value. To this, DNA-based identification of tissue remains could offer fine resolution. For honey, this would allow the usage of not only pollen but all plant tissue, and also that of microbes in the product, for discerning the origin. Here we examined how plant, bacterial and fungal taxa identified by DNA metabarcoding and metagenomics differentiate between honey samples from three neighbouring countries. To establish how the taxonomic contents of honey reflect the country of origin, we used joint species distribution modelling. At the lowest taxonomic level by metabarcoding, with operational taxonomic units, the country of origin explained the majority of variation in the data (70-79%), with plant and fungal gene regions providing the clearest distinction between countries. At the taxonomic level of genera, plants provided the most separation between countries with both metabarcoding and metagenomics. The DNA-based methods distinguish the countries more than the morphological pollen identification and the removal of pollen has only a minor effect on taxonomic recovery by DNA. As we find good resolution among honeys from regions with similar biota, DNA-based methods hold great promise for resolving honey origins among more different regions.


Assuntos
Mel/análise , Metagenômica , Bactérias/genética , DNA/genética , Código de Barras de DNA Taxonômico , Fungos/genética , Plantas/genética
8.
Ambio ; 46(Suppl 1): 12-25, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116681

RESUMO

How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land-atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.


Assuntos
Mudança Climática , Monitorização de Parâmetros Ecológicos , Cadeia Alimentar , Animais , Regiões Árticas , Artrópodes/fisiologia , Aves/fisiologia , Comportamento Alimentar , Groenlândia , Polinização , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
9.
Ecol Evol ; 6(23): 8431-8439, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28031795

RESUMO

Inflow of matter and organisms may strongly affect the local density and diversity of organisms. This effect is particularly evident on shores where organisms with aquatic larval stages enter the terrestrial food web. The identities of such trophic links are not easily estimated as spiders, a dominant group of shoreline predator, have external digestion. We compared trophic links and the prey diversity of spiders on different shore types along the Baltic Sea: on open shores and on shores with a reed belt bordering the water. A priori, we hypothesized that the physical structure of the shoreline reduces the flow between ecosystem and the subsidies across the sea-land interface. To circumvent the lack of morphologically detectable remains of spider prey, we used a combination of stable isotope and molecular gut content analyses. The two tools used for diet analysis revealed complementary information on spider diets. The stable isotope analysis indicated that spiders on open shores had a marine signal of carbon isotopes, while spiders on reedy shores had a terrestrial signal. The molecular analysis revealed a diverse array of dipteran and lepidopteran prey, where spiders on open and reedy shores shared a similar diet with a comparable proportion of chironomids, the larvae of which live in the marine system. Comparing the methods suggests that differences in isotope composition of the two spider groups occurred because of differences in the chironomid diets: as larvae, chironomids of reedy shores likely fed on terrestrial detritus and acquired a terrestrial isotope signature, while chironomids of open shores utilized an algal diet and acquired a marine isotope signature. Our results illustrate how different methods of diet reconstruction may shed light on complementary aspects of nutrient transfer. Overall, they reveal that reed belts can reduce connectivity between habitats, but also function as a source of food for predators.

10.
Ecol Evol ; 5(17): 3842-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26380710

RESUMO

How food webs are structured has major implications for their stability and dynamics. While poorly studied to date, arctic food webs are commonly assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with populations and species united by only a low number of links. We provide the first highly resolved description of trophic link structure for a large part of a high-arctic food web. For this purpose, we apply a combination of recent techniques to describing the links between three predator guilds (insectivorous birds, spiders, and lepidopteran parasitoids) and their two dominant prey orders (Diptera and Lepidoptera). The resultant web shows a dense link structure and no compartmentalization or modularity across the three predator guilds. Thus, both individual predators and predator guilds tap heavily into the prey community of each other, offering versatile scope for indirect interactions across different parts of the web. The current description of a first but single arctic web may serve as a benchmark toward which to gauge future webs resolved by similar techniques. Targeting an unusual breadth of predator guilds, and relying on techniques with a high resolution, it suggests that species in this web are closely connected. Thus, our findings call for similar explorations of link structure across multiple guilds in both arctic and other webs. From an applied perspective, our description of an arctic web suggests new avenues for understanding how arctic food webs are built and function and of how they respond to current climate change. It suggests that to comprehend the community-level consequences of rapid arctic warming, we should turn from analyses of populations, population pairs, and isolated predator-prey interactions to considering the full set of interacting species.

11.
Proc Natl Acad Sci U S A ; 111(5): 1885-90, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449902

RESUMO

How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host-parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them.


Assuntos
DNA/genética , Cadeia Alimentar , Percepção , Animais , Geografia , Groenlândia , Interações Hospedeiro-Parasita/genética , Lepidópteros/genética , Dados de Sequência Molecular
12.
PLoS One ; 8(6): e67367, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826279

RESUMO

Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change.


Assuntos
Cadeia Alimentar , Animais , Regiões Árticas , Geografia , Groenlândia , Herbivoria/fisiologia , Lepidópteros/fisiologia , Parasitos/fisiologia , Comportamento Predatório/fisiologia , Especificidade da Espécie
13.
Insects ; 2(2): 112-27, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26467617

RESUMO

Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae) withalmost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species). Here,we review the current knowledge of the origin and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successfulradiations occur in open and semi-open habitats. We discuss the likely mechanisms of speciation and the ecological characteristics of the extant communities, emphasizing the role of adaptation along environmental gradients and allopatric speciation in generating the exceptionally high beta diversity in Malagasy dung beetles. Phylogeographic analyses of selected species reveal complex patterns with evidence for genetic introgression between old taxa. The introduction of cattle to Madagascar 1500 years ago created a new abundant resource, onto which a few species haveshifted and thereby been able to greatly expand their geographical ranges.

14.
Mol Phylogenet Evol ; 57(2): 710-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20732432

RESUMO

Madagascar has an exceptionally large fauna of more than 250 species of endemic dung beetles. Based on molecular phylogenies, the species descend from eight independent overseas colonisations, of which four have given rise to big radiations. Here, we analyse the tribe Canthonini with three parallel radiations following the respective colonisations at 64-44 Mya (Arachnodes-Epilissus, 101 species), 30-19 Mya (Epactoides, 37 species), and 24-15 Mya (Apotolamprus-Nanos, 61 species). All three radiations have taken place in forests, but there are also substantial differences between them. The oldest radiation exhibits the greatest ecological diversification, including monophyletic groups of primate and cattle dung specialists and multiple shifts to arboreal foraging. Analysis of pairs of sister species suggests allopatric speciation in the oldest and the youngest, apparently non-adaptive, radiations, whereas in Epactoides closely related species have diverged ecologically and have largely overlapping geographical ranges, suggestive of adaptive radiation in parapatry or regional sympatry.


Assuntos
Besouros/classificação , Besouros/genética , Filogenia , Animais , Teorema de Bayes , Madagáscar , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética
15.
Ecol Lett ; 11(11): 1208-1215, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18778273

RESUMO

The endemic dung beetle subtribe Helictopleurina has 65 species mostly in wet forests in eastern Madagascar. There are no extant native ungulates in Madagascar, but three Helictopleurus species have shifted to the introduced cattle dung in open habitats in the past 1500 years. Helictopleurus neoamplicollis and Helictopleurus marsyas exhibit very limited cytochrome oxidase subunit 1 haplotype diversity and a single haplotype is present across Madagascar, suggesting that these species shifted to cattle dung in a small region followed by rapid range expansion. In contrast, patterns of molecular diversity in Helictopleurus quadripunctatus indicate a gradual diet shift across most of southern Madagascar, consistent with somewhat broader diet in this species. The three cattle dung-using Helictopleurus species have significantly greater geographical ranges than the forest-dwelling species, apparently because the shift to the currently very abundant new resource relaxed interspecific competition that hinders range expansion in the forest species.


Assuntos
Besouros/fisiologia , Fezes , Variação Genética , Animais , Bovinos , Besouros/classificação , Besouros/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Madagáscar , Dados de Sequência Molecular
16.
Mol Phylogenet Evol ; 47(3): 1076-89, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424187

RESUMO

Adaptive radiations of mammals have contributed to the exceptionally high levels of biodiversity and endemism in Madagascar. Here we examine the evolutionary history of the endemic dung beetle tribe Helictopleurini (Scarabaeidae) and its relationship to the widely distributed Oniticellini and Onthophagini. Helictopleurini species are dependent on mammals for their resources. We date the single origin of the tribe at 37 to 23 MY ago, indicating overseas colonization of Madagascar. The main radiation occurred concurrently with the main radiations of lemurs. The ancestors of Helictopleurini are inferred to have been coprophagous species inhabiting open habitats. Subsequent evolution has involved a shift into forests, changes in resource use to a more generalized diet, and changes in body size. Four species of the extant 65 species have shifted to use the dung of the recently introduced cattle in open habitats, allowing these species to greatly expand their geographical ranges.


Assuntos
Adaptação Biológica/genética , Besouros/genética , Fezes/parasitologia , Árvores , Animais , Teorema de Bayes , Bovinos , Sequência Consenso , Ecossistema , Variação Genética , Geografia , Madagáscar , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA