Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 288(39): 27836-48, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940047

RESUMO

The transcriptional co-repressor C-terminal binding protein (CtBP) interacts with a number of repressor proteins and chromatin modifying enzymes. How the biochemical properties including binding of dinucleotide, oligomerization, and dehydrogenase domains of CtBP1 direct the assembly of a functional co-repressor to influence gene expression is not well understood. In the current study we demonstrate that CtBP1 assembles into a tetramer in a NAD(H)-dependent manner, proceeding through a dimeric intermediate. We find that NAD-dependent oligomerization correlates with NAD(+) binding affinity and that the carboxyl terminus is required for assembly of a dimer of dimers. Mutant CtBP1 proteins that abrogate dinucleotide-binding retain wild type affinity for the PXDLS motif, but do not self-associate either in vitro or in vivo. CtBP1 proteins with mutations in the dehydrogenase domain still retain the ability to self-associate and bind target proteins. Both co-immunoprecipitation and mammalian two-hybrid experiments demonstrate that CtBP1 self-association occurs within the nucleus, and depends on dinucleotide binding. Repression of transcription does not depend on dinucleotide binding or an intact dehydrogenase domain, but rather depends on the amino-terminal domain that recruits PXDLS containing targets. We show that tryptophan 318 (Trp(318)) is a critical residue for tetramer assembly and likely functions as a switch for effective dimerization following NAD(+) binding. These results suggest that dinucleotide binding permits CtBP1 to form an intranuclear homodimer through a Trp(318) switch, creating a nucleation site for multimerization through the C-terminal domain for tetramerization to form an effective repression complex.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Ligação a DNA/química , NAD/metabolismo , Triptofano/química , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Cromatografia em Gel , Reagentes de Ligações Cruzadas/farmacologia , Transferência Ressonante de Energia de Fluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Mutagênese , Nucleotídeos/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
3.
Matrix Biol ; 30(1): 9-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20932905

RESUMO

Correct folding of the collagen triple helix requires a self-association step which selects and binds α-chains into trimers. Here we report the crystal structure of the trimerization domain of human type XV collagen. The trimerization domain of type XV collagen contains three monomers each composed of four ß-sheets and an α-helix. The hydrophobic core of the trimer is devoid of solvent molecules and is shaped by ß-sheet planes from each monomer. The trimerization domain is extremely stable and forms at picomolar concentrations. It is found that the trimerization domain of type XV collagen is structurally similar to that of type XVIII, despite only 32% sequence identity. High structural conservation indicates that the multiplexin trimerization domain represents a three dimensional fold that allows for sequence variability while retaining structural integrity necessary for tight and efficient trimerization.


Assuntos
Colágeno/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Dicroísmo Circular , Colágeno/biossíntese , Colágeno/isolamento & purificação , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Desnaturação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Homologia Estrutural de Proteína
4.
J Neurosci ; 28(15): 3846-60, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18400884

RESUMO

We have investigated whether reverse signaling via a glycosyl-phosphatidylinositol (GPI)-linked ephrin controls the behavior of migratory neurons in vivo. During the formation of the enteric nervous system (ENS) in the moth Manduca, approximately 300 neurons [enteric plexus (EP) cells] migrate onto the midgut via bilaterally paired muscle bands but avoid adjacent midline regions. As they migrate, the EP cells express a single ephrin ligand (MsEphrin; a GPI-linked ligand), whereas the midline cells express the corresponding Eph receptor (MsEph). Blocking endogenous MsEphrin-MsEph receptor interactions in cultured embryos resulted in aberrant midline crossing by the neurons and their processes. In contrast, activating endogenous MsEphrin on the EP cells with dimeric MsEph-Fc constructs inhibited their migration and outgrowth, supporting a role for MsEphrin-dependent reverse signaling in this system. In short-term cultures, blocking endogenous MsEph receptors allowed filopodia from the growth cones of the neurons to invade the midline, whereas activating neuronal MsEphrin led to filopodial retraction. MsEphrin-dependent signaling may therefore guide the migratory enteric neurons by restricting the orientation of their leading processes. Knocking down MsEphrin expression in the EP cells with morpholino antisense oligonucleotides also induced aberrant midline crossing, consistent with the effects of blocking endogenous MsEphrin-MsEph interactions. Unexpectedly, this treatment enhanced the overall extent of migration, indicating that MsEphrin-dependent signaling may also modulate the general motility of the EP cells. These results demonstrate that MsEphrin-MsEph receptor interactions normally prevent midline crossing by migratory neurons within the developing ENS, an effect that is most likely mediated by reverse signaling through this GPI-linked ephrin ligand.


Assuntos
Movimento Celular/fisiologia , Efrinas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Manduca/embriologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Axônios/fisiologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Efrinas/antagonistas & inibidores , Efrinas/genética , Cones de Crescimento/fisiologia , Ligantes , Oligonucleotídeos Antissenso/farmacologia , Pseudópodes/fisiologia , Receptores da Família Eph/fisiologia
5.
J Biol Chem ; 278(4): 2411-8, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12441341

RESUMO

MutY, an adenine glycosylase, initiates the critical repair of an adenine:8-oxo-guanine base pair in DNA arising from polymerase error at the oxidatively damaged guanine. Here we demonstrate for the first time, using presteady-state active site titrations, that MutY assembles into a dimer upon binding substrate DNA and that the dimer is the functionally active form of the enzyme. Additionally, we observed allosteric inhibition of glycosylase activity in the dimer by the concurrent binding of two lesion mispairs. Active site titration results were independently verified by gel mobility shift assays and quantitative DNA footprint titrations. A model is proposed for the potential functional role of the observed polysteric and allosteric regulation in recruiting and coordinating interactions with the methyl-directed mismatch repair system.


Assuntos
DNA Glicosilases , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Acrilamidas/farmacologia , Adenina/química , Pareamento Incorreto de Bases , Sítios de Ligação , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Dimerização , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Guanina/química , Modelos Químicos , Oligonucleotídeos/farmacologia , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA