Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 21028, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251630

RESUMO

Novel stimulation methods are needed to overcome the limitations of contemporary cochlear implants. Optogenetics is a technique that confers light sensitivity to neurons via the genetic introduction of light-sensitive ion channels. By controlling neural activity with light, auditory neurons can be activated with higher spatial precision. Understanding the behaviour of opsins at high stimulation rates is an important step towards their translation. To elucidate this, we compared the temporal characteristics of auditory nerve and inferior colliculus responses to optogenetic, electrical, and combined optogenetic-electrical stimulation in virally transduced mice expressing one of two channelrhodopsins, ChR2-H134R or ChIEF, at stimulation rates up to 400 pulses per second (pps). At 100 pps, optogenetic responses in ChIEF mice demonstrated higher fidelity, less change in latency, and greater response stability compared to responses in ChR2-H134R mice, but not at higher rates. Combined stimulation improved the response characteristics in both cohorts at 400 pps, although there was no consistent facilitation of electrical responses. Despite these results, day-long stimulation (up to 13 h) led to severe and non-recoverable deterioration of the optogenetic responses. The results of this study have significant implications for the translation of optogenetic-only and combined stimulation techniques for hearing loss.


Assuntos
Vias Auditivas , Channelrhodopsins , Estimulação Elétrica , Optogenética , Animais , Optogenética/métodos , Camundongos , Vias Auditivas/fisiologia , Vias Auditivas/metabolismo , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Estimulação Elétrica/métodos , Colículos Inferiores/fisiologia , Colículos Inferiores/metabolismo , Nervo Coclear/fisiologia , Nervo Coclear/metabolismo , Cinética , Implantes Cocleares
2.
Adv Sci (Weinh) ; 11(30): e2401392, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874431

RESUMO

Viral vectors and lipofection-based gene therapies have dispersion-dependent transduction/transfection profiles that thwart precise targeting. The study describes the development of focused close-field gene electrotransfer (GET) technology, refining spatial control of gene expression. Integration of fluidics for precise delivery of "naked" plasmid deoxyribonucleic acid (DNA) in sucrose carrier within the focused electric field enables negative biasing of near-field conductivity ("conductivity-clamping"-CC), increasing the efficiency of plasma membrane molecular translocation. This enables titratable gene delivery with unprecedently low charge transfer. The clinic-ready bionics-derived CC-GET device achieved neurotrophin-encoding miniplasmid DNA delivery to the cochlea to promote auditory nerve regeneration; validated in deafened guinea pig and cat models, leading to improved central auditory tuning with bionics-based hearing. The performance of CC-GET is evaluated in the brain, an organ problematic for pulsed electric field-based plasmid DNA delivery, due to high required currents causing Joule-heating and damaging electroporation. Here CC-GET enables safe precision targeting of gene expression. In the guinea pig, reporter expression is enabled in physiologically critical brainstem regions, and in the striatum (globus pallidus region) delivery of a red-shifted channelrhodopsin and a genetically-encoded Ca2+ sensor, achieved photoactivated neuromodulation relevant to the treatment of Parkinson's Disease and other focal brain disorders.


Assuntos
Condutividade Elétrica , Técnicas de Transferência de Genes , Terapia Genética , Animais , Cobaias , Terapia Genética/métodos , Eletroporação/métodos , Gatos , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Plasmídeos/genética
3.
Hear Res ; 440: 108911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977051

RESUMO

For individuals with severe to profound hearing loss resulting from irreversibly damaged hair cells, cochlear implants can be used to restore hearing by delivering electrical stimulation directly to the spiral ganglion neurons. However, current spread lowers the spatial resolution of neural activation. Since light can be easily confined, optogenetics is a technique that has the potential to improve the precision of neural activation, whereby visible light is used to stimulate neurons that are modified with light-sensitive opsins. This study compares the spread of neural activity across the inferior colliculus of the auditory midbrain during electrical and optical stimulation in the cochlea of acutely deafened mice with opsin-modified spiral ganglion neurons (H134R variant of the channelrhodopsin-2). Monopolar electrical stimulation was delivered via each of four 0.2 mm wide platinum electrode rings at 0.6 mm centre-to-centre spacing, whereas 453 nm wavelength light was delivered via each of five 0.22 × 0.27 mm micro-light emitting diodes (LEDs) at 0.52 mm centre-to-centre spacing. Channel interactions were also quantified by threshold changes during simultaneous stimulation by pairs of electrodes or micro-LEDs at different distances between the electrodes (0.6, 1.2 and 1.8 mm) or micro-LEDs (0.52, 1.04, 1.56 and 2.08 mm). The spread of activation resulting from single channel optical stimulation was approximately half that of monopolar electrical stimulation as measured at two levels of discrimination above threshold (p<0.001), whereas there was no significant difference between optical stimulation in opsin-modified deafened mice and pure tone acoustic stimulation in normal-hearing mice. During simultaneous micro-LED stimulation, there were minimal channel interactions for all micro-LED spacings tested. For neighbouring micro-LEDs/electrodes, the relative influence on threshold was 13-fold less for optical stimulation compared electrical stimulation (p<0.05). The outcomes of this study show that the higher spatial precision of optogenetic stimulation results in reduced channel interaction compared to electrical stimulation, which could increase the number of independent channels in a cochlear implant. Increased spatial resolution and the ability to activate more than one channel simultaneously could lead to better speech perception in cochlear implant recipients.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Camundongos , Animais , Optogenética/métodos , Cóclea/fisiologia , Opsinas/genética , Estimulação Elétrica , Surdez/terapia , Surdez/cirurgia
4.
J Control Release ; 361: 621-635, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572963

RESUMO

The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 µg of NT3 loaded per SP that weights ~50 µg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 µg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 µg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.


Assuntos
Surdez , Perda Auditiva , Animais , Cobaias , Gatos , Adesivo Tecidual de Fibrina/farmacologia , Ácido Hialurônico , Distribuição Tecidual , Cóclea , Janela da Cóclea/patologia , Janela da Cóclea/cirurgia , Perda Auditiva/terapia , Fatores de Crescimento Neural
5.
Front Neurosci ; 17: 1190662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360169

RESUMO

Introduction: Electrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation. Methods: The sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured. Results: Optically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aß) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aß hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aß fiber and myogenic thresholds (p = 0.008, n = 4). Discussion: The results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aß fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery.

6.
J Neural Eng ; 20(2)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963106

RESUMO

Objective. Optogenetic stimulation of the auditory nerve offers the ability to overcome the limitations of cochlear implants through spatially precise stimulation, but cannot achieve the temporal precision nor temporal fidelity required for good hearing outcomes. Auditory midbrain recordings have indicated a combined (hybrid) stimulation approach may permit improvements in the temporal precision without sacrificing spatial precision by facilitating electrical activation thresholds. However, previous research has been conducted in undeafened or acutely deafened animal models, and the impact of chronic deafness remains unclear. Our study aims to compare the temporal precision of auditory nerve responses to optogenetic, electrical, and combined stimulation in acutely and chronically deafened animals.Methods. We directly compare the temporal fidelity (measured as percentage of elicited responses) and precision (i.e. stability of response size and timing) of electrical, optogenetic, and hybrid stimulation (varying sub-threshold or supra-threshold optogenetic power levels combined with electrical stimuli) through compound action potential and single-unit recordings of the auditory nerve in transgenic mice expressing the opsin ChR2-H134R in auditory neurons. Recordings were conducted immediately or 2-3 weeks following aminoglycoside deafening when there was evidence of auditory nerve degeneration.Main results. Results showed that responses to electrical stimulation had significantly greater temporal precision than optogenetic stimulation (p< 0.001 for measures of response size and timing). This temporal precision could be maintained with hybrid stimulation, but only when the optogenetic stimulation power used was below or near activation threshold and worsened with increasing optical power. Chronically deafened mice showed poorer facilitation of electrical activation thresholds with concurrent optogenetic stimulation than acutely deafened mice. Additionally, responses in chronically deafened mice showed poorer temporal fidelity, but improved temporal precision to optogenetic and hybrid stimulation compared to acutely deafened mice.Significance. These findings show that the improvement to temporal fidelity and temporal precision provided by a hybrid stimulation paradigm can also be achieved in chronically deafened animals, albeit at higher levels of concurrent optogenetic stimulation levels.


Assuntos
Implantes Cocleares , Surdez , Animais , Camundongos , Optogenética , Nervo Coclear , Camundongos Transgênicos , Estimulação Elétrica , Cóclea , Estimulação Acústica , Limiar Auditivo
7.
Hear Res ; 426: 108635, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306607

RESUMO

There is an increasing trend to provide cochlear implants for people with useful residual hearing, typically in the low frequency range (<2 kHz). These recipients typically use both electrical stimulation from their implant and acoustic stimulation that has been amplified with a hearing aid to access their residual hearing, so called electro-acoustic stimulation (EAS). However, a significant problem is the loss of residual hearing following implantation that can occur immediately following surgery or delayed over many months. One potential cause of the loss of residual hearing is the over stimulation of remaining hair cells due to the combination of an amplified acoustic input and direct electrical activation. This paper aims to test this hypothesis. Here, we have used a neonatal aminoglycoside-induced partial hearing cat model that resulted in a high frequency hearing loss (>4 kHz). Two separate cohorts of animals were implanted and received unilateral chronic electrical stimulation using clinical stimulators and speech processors over 5 months. To simulate potential over stimulation via a hearing aid, one cohort of animals were also exposed to an enhanced acoustic environment consisting of 80 dB SPL 4-talker babble presented 14 h per day. Hearing thresholds for both stimulated and unstimulated ears were measured throughout the implantation period. Cochleae were collected for histology to measure spiral ganglion neuron survival, hair cell survival and tissue response to chronic implantation and electrical stimulation. Consistent with clinical observations, cochlear implantation and stimulation resulted in an increase in threshold across the population. There was no significant effect of the enhanced acoustic environment on auditory thresholds or histological measures (hair cell survival, neuronal survival) of hearing, indicating that hair cell overstimulation was not a significant driver of loss of residual hearing.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Audição/fisiologia , Limiar Auditivo/fisiologia , Estimulação Elétrica/métodos , Estimulação Acústica , Acústica
8.
Hear Res ; 426: 108470, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35249777

RESUMO

The expansion of criteria for cochlear implantation has resulted in increasing numbers of cochlear implant subjects having some level of residual hearing. The present study examined the effects of implantation surgery and long-term electrical stimulation on residual hearing in a partially deafened cat model. Eighteen animals were partially deafened, implanted and chronically stimulated. Implantation resulted in a pronounced loss evident 2-weeks post implantation of up to 30-40 dB at 4 & 8 kHz which was statistically significant (2-way RM ANOVA (Time, Frequency): p(Time) = 0.001; p(Frequency) < 0.001; p(Time x Frequency) < 0.001)). Chronic stimulation resulted in a significant (RM ANOVA: p(Time) = 0.030) ongoing hearing loss, with 5 animals (∼30%) exhibiting an increase in threshold of 20 dB or more. Different loss profiles were evident with peripheral and central hearing assessments suggests that changes in 'central gain' may be occurring. Despite significant loss of hair cells and spiral ganglion neurons and distinct fibrous tissue growth in the scala tympani following implantation and long-term electrical stimulation, there were no significant correlations with any histological measures and ongoing hearing loss. The partially deafened, chronically stimulated cat model provides a clinically relevant model in which to further investigate the cause of the delayed hearing loss following cochlear implant surgery and use.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Animais , Cóclea/fisiologia , Audição , Surdez/patologia , Perda Auditiva/patologia , Estimulação Elétrica
9.
J Control Release ; 342: 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999140

RESUMO

Hearing loss is the most prevalent sensory disorder affecting nearly half a billion people worldwide. Aside from devices to assist hearing, such as hearing aids and cochlear implants, a drug treatment for hearing loss has yet to be developed. The neurotrophin family of growth factors has long been established as a potential therapy, however delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We previously demonstrated that direct delivery of exogenous neurotrophin-3 (NT3) in the guinea pig cochleae via a bolus injection was rapidly cleared from the inner ear, with almost complete elimination 3 days post-treatment. Here, we explored the potential of suprapaticles (SPs) for NT3 delivery to the inner ear to achieve sustained delivery over time. SPs are porous spheroid structures comprised of smaller colloidal silica nanoparticles that provide a platform for long-term controlled release of therapeutics. This study aimed to assess the pharmacokinetics and biodistribution of SP-delivered NT3. We used a radioactive tracer (iodine 125: 125I) to label the NT3 to determine the loading, retention and distribution of NT3 delivered via SPs. Gamma measurements taken from 125I NT3 loaded SPs revealed high drug loading (an average of 5.3 µg of NT3 loaded per SP weighing 50 µg) and elution capacities in vitro (67% cumulative release over one month). Whole cochlear gamma measurements from SP-implanted cochleae harvested at various time points revealed detection of 125I NT3 in the guinea pig cochlea after one month, with 3.6 and 10% of the loaded drug remaining in the intracochlear and round window-implanted cochleae respectively. Autoradiography analysis of cochlear micro-sections revealed widespread 125I NT3 distribution after intracochlear SP delivery, but more restricted distribution with the round window delivery approach. Collectively, drug delivery into the inner ear using SPs support sustained, long-term availability and release of neurotrophins in the inner ear.


Assuntos
Surdez , Orelha Interna , Animais , Cóclea , Surdez/tratamento farmacológico , Cobaias , Humanos , Neurotrofina 3 , Distribuição Tecidual
10.
Sci Rep ; 11(1): 11229, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045604

RESUMO

Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n = 4). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25 µm platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to 'prime' or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation.


Assuntos
Cóclea/metabolismo , Neurônios/metabolismo , Opsinas/metabolismo , Estimulação Acústica , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estimulação Elétrica , Vetores Genéticos , Cobaias , Camundongos , Opsinas/genética , Optogenética/métodos
11.
J Neural Eng ; 18(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33578409

RESUMO

Objective. Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits. We previously reported no adverse effects of Pt corrosion products in the cochleae of guinea pigs following 4 weeks of electrical stimulation using charge densities far greater than the published safe limits for cochlear implants. The present study examines the histopathological effects of Pt within the cochlea following continuous stimulation at a charge density well above the defined safe limits for periods up to 6 months.Approach. Six cats were bilaterally implanted with Pt electrode arrays and unilaterally stimulated using charge balanced current pulses at a charge density of 267µC cm-2phase-1using a tripolar electrode configuration. Electrochemical measurements were made throughout the implant duration and evoked potentials recorded at the outset and on completion of the stimulation program. Cochleae were examined histologically for particulate Pt, tissue response, and auditory nerve survival; electrodes were examined for surface corrosion; and cochlea, brain, kidney, and liver tissue analysed for trace levels of Pt.Main results. Chronic stimulation resulted in both a significant increase in tissue response and particulate Pt within the tissue capsule surrounding the electrode array compared with implanted, unstimulated control cochleae. Importantly, there was no stimulus-induced loss of auditory neurons (ANs) or increase in evoked potential thresholds. Stimulated electrodes were significantly more corroded compared with unstimulated electrodes. Trace analysis revealed Pt in both stimulated and control cochleae although significantly greater levels were detected within stimulated cochleae. There was no evidence of Pt in brain or liver; however, trace levels of Pt were recorded in the kidneys of two animals. Finally, increased charge storage capacity and charge injection limit reflected the more extensive electrode corrosion associated with stimulated electrodes.Significance. Long-term electrical stimulation of Pt electrodes at a charge density well above existing safety limits and nearly an order of magnitude higher than levels used clinically, does not adversely affect the AN population or reduce neural function, despite a stimulus-induced tissue response and the accumulation of Pt corrosion product. The mechanism resulting in Pt within the unstimulated cochlea is unclear, while the level of Pt observed systemically following stimulation at these very high charge densities does not appear to be of clinical significance.


Assuntos
Implantes Cocleares , Platina , Animais , Cóclea/patologia , Estimulação Elétrica , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Cobaias , Solubilidade
12.
MethodsX ; 7: 101078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072529

RESUMO

Hearing loss is the most common sensory deficit worldwide with no approved therapeutics for treatment. Local neurotrophin delivery into the cochlea has shown great potential in protecting and repairing the sensory cells important for hearing. However, delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We have developed a method to test the pharmacokinetics of neurotrophin released from porous silica particles called 'supraparticles' that can provide sustained release of neurotrophins to the inner ear.•This report describes a radiolabeling method to examine neurotrophin retention and distribution in the cochlea. The neurotrophin was labeled with a radioactive tracer (iodine 125: 125I) and delivered into the cochlea via the supraparticle system.•Gamma counts reveal drug levels and clearance in the intact cochlea, as well as accumulation in off-target organs (safety test). Autoradiography analyses using film and emulsion permit quantification and visualization of drug distribution at the cellular level. The method has a detection limit of 0.8 pg of radiolabeled neurotrophin-3 in cochlear sections exposed to film.•The tracer 125I with a half-life of 59.4 days can be used to label other drugs/substances with a tyrosine residue and therefore be broadly applicable for long-term pharmacokinetic studies in other systems.

13.
J Neural Eng ; 17(5): 056046, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33036009

RESUMO

OBJECTIVE: Compared to electrical stimulation, optogenetic stimulation has the potential to improve the spatial precision of neural activation in neuroprostheses, but it requires intense light and has relatively poor temporal kinetics. We tested the effect of hybrid stimulation, which is the combination of subthreshold optical and electrical stimuli, on spectral and temporal fidelity in the cochlea by recording multiunit activity in the inferior colliculus of channelrhodopsin (H134R variant) transgenic mice. APPROACH: Pulsed light or biphasic electrical pulses were delivered to cochlear spiral ganglion neurons of acutely deafened mice, either as individual stimuli or as hybrid stimuli for which the timing of the electrical pulse had a varied delay relative to the start of the optical pulse. Response thresholds, spread of activation and entrainment data were obtained from multi-unit recordings from the auditory midbrain. MAIN RESULTS: Facilitation occurred when subthreshold electrical stimuli were applied at the end of, or up to 3.75 ms after subthreshold optical pulses. The spread of activation resulting from hybrid stimulation was significantly narrower than electrical-only and optical-only stimulation (p < 0.01), measured at equivalent suprathreshold levels of loudness that are relevant to cochlear implant users. Furthermore, temporal fidelity, measured as maximum following rates to 300 ms pulse trains bursts up to 240 Hz, was 2.4-fold greater than optical-only stimulation (p < 0.05). SIGNIFICANCE: By significantly improving spectral resolution of electrical- and optical-only stimulation and the temporal fidelity of optical-only stimulation, hybrid stimulation has the potential to increase the number of perceptually independent stimulating channels in a cochlear implant.


Assuntos
Implantes Cocleares , Surdez , Estimulação Acústica , Animais , Cóclea , Estimulação Elétrica , Camundongos , Optogenética , Gânglio Espiral da Cóclea
14.
Healthc Technol Lett ; 7(3): 58-65, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32754339

RESUMO

Electrical stimulation has been used for decades in devices such as pacemakers, cochlear implants and more recently for deep brain and retinal stimulation and electroceutical treatment of disease. However, current spread from the electrodes limits the precision of neural activation, leading to a low quality therapeutic outcome or undesired side-effects. Alternative methods of neural stimulation such as optical stimulation offer the potential to deliver higher spatial resolution of neural activation. Direct optical stimulation is possible with infrared light, while visible light can be used to activate neurons if the neural tissue is genetically modified with a light sensitive ion channel. Experimentally, both methods have resulted in highly precise stimulation with little spread of activation at least in the cochlea, each with advantages and disadvantages. Infrared neural stimulation does not require modification of the neural tissue, but has very high power requirements. Optogenetics can achieve precision of activation with lower power, but only in conjunction with targeted insertion of a light sensitive ion channel into the nervous system via gene therapy. This review will examine the advantages and limitations of optical stimulation of neural tissue, using the cochlea as an exemplary model and recent developments for retinal and deep brain stimulation.

15.
J Neural Eng ; 17(1): 016069, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31923907

RESUMO

OBJECTIVE: The performance of neuroprostheses, including cochlear and retinal implants, is currently constrained by the spatial resolution of electrical stimulation. Optogenetics has improved the spatial control of neurons in vivo but lacks the fast-temporal dynamics required for auditory and retinal signalling. The objective of this study is to demonstrate that combining optical and electrical stimulation in vitro could address some of the limitations associated with each of the stimulus modes when used independently. APPROACH: The response of murine auditory neurons expressing ChR2-H134 to combined optical and electrical stimulation was characterised using whole cell patch clamp electrophysiology. MAIN RESULTS: Optogenetic costimulation produces a three-fold increase in peak firing rate compared to optical stimulation alone and allows spikes to be evoked by combined subthreshold optical and electrical inputs. Subthreshold optical depolarisation also facilitated spiking in auditory neurons for periods of up to 30 ms without evidence of wide-scale Na+ inactivation. SIGNIFICANCE: These findings may contribute to the development of spatially and temporally selective optogenetic-based neuroprosthetics and complement recent developments in 'fast opsins'.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Próteses Neurais , Optogenética/métodos , Potenciais de Ação/fisiologia , Animais , Implantes Auditivos de Tronco Encefálico , Vias Auditivas/química , Células Cultivadas , Nervo Coclear/química , Estimulação Elétrica/métodos , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Optogenética/instrumentação
16.
Biomacromolecules ; 20(9): 3425-3434, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31411865

RESUMO

Supraparticles (SPs) assembled from smaller colloidal nanoparticles can serve as depots of therapeutic compounds and are of interest for long-term, sustained drug release in biomedical applications. However, a key challenge to achieving temporal control of drug release from SPs is the occurrence of an initial rapid release of the loaded drug (i.e., "burst" release) that limits sustained release and potentially causes burst release-associated drug toxicity. Herein, a biocoating strategy is presented for silica-SPs (Si-SPs) to reduce the extent of burst release of the loaded model protein lysozyme. Specifically, Si-SPs were coated with a fibrin film, formed by enzymatic conversion of fibrinogen into fibrin. The fibrin-coated Si-SPs, FSi-SPs, which could be loaded with 7.9 ± 0.9 µg of lysozyme per SP, released >60% of cargo protein over a considerably longer period of time of >20 days when compared with the uncoated Si-SPs that released the same amount of the cargo protein, however, within the first 3 days. Neurotrophins that support the survival and differentiation of neurons could also be loaded at ∼7.3 µg per SP, with fibrin coating also delaying neurotrophin release (only 10% of cargo released over 21 days compared with 60% from Si-SPs). In addition, the effects of incorporating a hydrogel-based system for surgical delivery and the opportunity to control drug release kinetics were investigated-an alginate-based hydrogel scaffold was used to encapsulate FSi-SPs. The introduction of the hydrogel further extended the initial release of the encapsulated lysozyme to ∼40 days (for the same amount of cargo released). The results demonstrate the increasing versatility of the SP drug delivery platform, combining large loading capacity with sustained drug release, that is tailorable using different modes of controlled delivery approaches.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Nanopartículas/química , Coloides/química , Coloides/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Fibrina/química , Fibrinogênio/química , Humanos , Hidrogéis/farmacologia , Muramidase/química , Dióxido de Silício/química
17.
Hear Res ; 380: 137-149, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301514

RESUMO

This Review outlines the development of DNA-based therapeutics for treatment of hearing loss, and in particular, considers the potential to utilize the properties of recombinant neurotrophins to improve cochlear auditory (spiral ganglion) neuron survival and repair. This potential to reduce spiral ganglion neuron death and indeed re-grow the auditory nerve fibres has been the subject of considerable pre-clinical evaluation over decades with the view of improving the neural interface with cochlear implants. This provides the context for discussion about the development of a novel means of using cochlear implant electrode arrays for gene electrotransfer. Mesenchymal cells which line the cochlear perilymphatic compartment can be selectively transfected with (naked) plasmid DNA using array - based gene electrotransfer, termed 'close-field electroporation'. This technology is able to drive expression of brain derived neurotrophic factor (BDNF) in the deafened guinea pig model, causing re-growth of the spiral ganglion peripheral neurites towards the mesenchymla cells, and hence into close proximity with cochlear implant electrodes within scala tympani. This was associated with functional enhancement of the cochlear implant neural interface (lower neural recruitment thresholds and expanded dynamic range, measured using electrically - evoked auditory brainstem responses). The basis for the efficiency of close-field electroporation arises from the compression of the electric field in proximity to the ganged cochlear implant electrodes. The regions close to the array with highest field strength corresponded closely to the distribution of bioreporter cells (adherent human embryonic kidney (HEK293)) expressing green fluorescent reporter protein (GFP) following gene electrotransfer. The optimization of the gene electrotransfer parameters using this cell-based model correlated closely with in vitro and in vivo cochlear gene delivery outcomes. The migration of the cochlear implant electrode array-based gene electrotransfer platform towards a clinical trial for neurotrophin-based enhancement of cochlear implants is supported by availability of a novel regulatory compliant mini-plasmid DNA backbone (pFAR4; plasmid Free of Antibiotic Resistance v.4) which could be used to package a 'humanized' neurotrophin expression cassette. A reporter cassette packaged into pFAR4 produced prominent GFP expression in the guinea pig basal turn perilymphatic scalae. More broadly, close-field gene electrotransfer may lend itself to a spectrum of potential DNA therapeutics applications benefitting from titratable, localised, delivery of naked DNA, for gene augmentation, targeted gene regulation, or gene substitution strategies.


Assuntos
Percepção Auditiva , Implante Coclear/instrumentação , Implantes Cocleares , Terapia Genética , Perda Auditiva/reabilitação , Audição , Fatores de Crescimento Neural/genética , Pessoas com Deficiência Auditiva/reabilitação , Animais , Percepção Auditiva/genética , Terapia Combinada , Eletroporação , Técnicas de Transferência de Genes , Audição/genética , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Perda Auditiva/psicologia , Humanos , Pessoas com Deficiência Auditiva/psicologia , Recuperação de Função Fisiológica , Resultado do Tratamento , Regulação para Cima
18.
Pharmacol Ther ; 200: 190-209, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075354

RESUMO

An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.


Assuntos
Perda Auditiva/terapia , Animais , Materiais Biocompatíveis/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Cóclea/anatomia & histologia , Cóclea/metabolismo , Cóclea/fisiologia , Implantes Cocleares , Sistemas de Liberação de Medicamentos , Terapia Genética , Humanos
19.
J Control Release ; 299: 53-63, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30790594

RESUMO

Neurotrophin therapy has potential to reverse some forms of hearing loss. However, cochlear pharmacokinetic studies are challenging due to small fluid volumes. Here a radioactive tracer was used to determine neurotrophin-3 retention, distribution and clearance after intracochlear administration. 125I-neurotrophin-3 was injected into guinea pig cochleae using a sealed injection technique comparing dosing volumes, rates and concentrations up to 750 µg/mL. Retention was measured by whole-cochlear gamma counts at five time points while distribution and clearance were assessed by autoradiography. Smaller injection volumes and higher concentrations correlated with higher retention of neurotrophin-3. Distribution of neurotrophin-3 was widespread throughout the cochlear tissue, decreasing in concentration from base to apex. Tissue distribution was non-uniform, with greatest density in cells lining the scala tympani and lower density in neural target tissue. The time constant for clearance of neurotrophin-3 from cochlear tissues was 38 h but neurotrophin-3 remained detectable for at least 2 weeks. Neurotrophin-3 was evident in the semi-circular canals with minor spread to the contralateral cochlea. This study is the first comprehensive evaluation of the disposition profile for a protein therapy in the cochlea. The findings and methods in this study will provide valuable guidance for the development of protein therapies for hearing loss.


Assuntos
Cóclea/metabolismo , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/farmacocinética , Animais , Autorradiografia , Cobaias , Perda Auditiva/metabolismo , Perda Auditiva/terapia , Humanos , Injeções , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/farmacocinética , Neurotrofina 3 , Distribuição Tecidual
20.
J Neural Eng ; 16(2): 026009, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30523828

RESUMO

OBJECTIVE: Although there are useful guidelines defining the boundary between damaging and non-damaging electrical stimulation they were derived from acute studies using large surface area electrodes in direct contact with cortical neurons. These parameters are a small subset of the parameters used by neural stimulators. More recently, histological examination of cochleae from patients that were long-term cochlear implant users have shown evidence of particulate platinum (Pt). The pathophysiological effect of Pt within the cochlea is unknown. We examined the response of the cochlea to stimulus levels beyond those regarded as safe, and to evaluate the pathophysiological response of the cochlea following chronic stimulation at charge densities designed to induce Pt corrosion in vivo. APPROACH: 19 guinea pigs were systemically deafened and implanted with a cochlear electrode array containing eight Pt electrodes of 0.05, 0.075 or 0.2 mm2 area. Animals were electrically stimulated continuously for 28 d using charge balanced current pulses at charge densities of 400, 267 or 100 µC/cm2/phase. Electrically-evoked auditory brainstem responses (EABRs) were recorded to monitor neural function. On completion of stimulation electrodes were examined using scanning electron microscopy (SEM) and cochleae examined histology. Finally, analysis of Pt was measured using energy dispersive x-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). MAIN RESULTS: Compared with unstimulated control electrodes and electrodes stimulated at 100 µC/cm2/phase, stimulation at 267 or 400 µC/cm2/phase resulted in significant Pt corrosion. Cochleae stimulated at these high charge densities contained particulate Pt. The extent of the foreign body response depended on the level of stimulation; cochleae stimulated at 267 or 400 µC/cm2/phase exhibited an extensive tissue response that included a focal region of necrosis close to the electrode. Despite chronic stimulation at high charge densities there was no loss of auditory neurons (ANs) in stimulated cochleae compared with their contralateral controls. Indeed, we report a statistically significant increase in AN density proximal to electrodes stimulated at 267 or 400 µC/cm2/phase. Finally, there was no evidence of a reduction in AN function associated with chronic stimulation at 100, 267 or 400 µC/cm2/phase as evidenced by stable EABR thresholds over the stimulation program. SIGNIFICANCE: Chronic electrical stimulation of Pt electrodes at 267 or 400 µC/cm2/phase evoked a vigorous tissue response and produced Pt corrosion products that were located close to the electrode. Despite these changes at the electrode/tissue interface there was no evidence of neural loss or a reduction in neural function.


Assuntos
Cóclea/patologia , Implantes Cocleares , Estimulação Elétrica , Neurônios/patologia , Platina/química , Animais , Surdez/fisiopatologia , Eletrodos , Potenciais Evocados Auditivos do Tronco Encefálico , Cobaias , Microscopia Eletrônica de Varredura , Rampa do Tímpano , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA