Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 4733-4742, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625508

RESUMO

Epitaxial titanium nitride (TiN) and titanium oxynitride (TiON) thin films have been grown on sapphire substrates using a pulsed laser deposition (PLD) method in high-vacuum conditions (base pressure <3 × 10-6 T). This vacuum contains enough residual oxygen to allow a time-independent gas phase oxidation of the ablated species as well as a time-dependent regulated surface oxidation of TiN to TiON films. The time-dependent surface oxidation is controlled by means of film deposition time that, in turn, is controlled by changing the number of laser pulses impinging on the polycrystalline TiN target at a constant repetition rate. By changing the number of laser pulses from 150 to 5000, unoxidized (or negligibly oxidized) and oxidized TiN films have been obtained with the thickness in the range of four unit cells to 70 unit cells of TiN/TiON. X-ray photoelectron spectroscopy (XPS) investigations reveal higher oxygen content in TiON films prepared with a larger number of laser pulses. The oxidation of TiN films is achieved by precisely controlling the time of deposition, which affects the surface diffusion of oxygen to the TiN film lattice. The lattice constants of the TiON films obtained by x-ray diffraction (XRD) increase with the oxygen content in the film, as predicted by molecular dynamics (MD) simulations. The lattice constant increase is explained based on a larger electrostatic repulsive force due to unbalanced local charges in the vicinity of Ti vacancies and substitutional O. The bandgap of TiN and TiON films, measured using UV-visible spectroscopy, has an asymmetric V-shaped variation as a function of the number of pulses. The bandgap variation following the lower number of laser pulses (150-750) of the V-shaped curve is explained using the quantum confinement effect, while the bandgap variation following the higher number of laser pulses (1000-5000) is associated with the modification in the band structure due to hybridization of O2p and N2p energy levels.

2.
Opt Lett ; 47(17): 4439-4442, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048673

RESUMO

Spatiotemporal mode-locking in a laser with anomalous dispersion is investigated. Mode-locked states with varying modal content can be observed, but we find it difficult to observe highly-multimode states. We describe the properties of these mode-locked states and compare them to the results of numerical simulations. Prospects for the generation of highly-multimode states and lasers based on multimode soliton formation are discussed.

3.
Opt Lett ; 47(3): 545-548, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103677

RESUMO

We demonstrate an optical parametric chirped-pulse amplifier (OPCPA) that uses birefringence phase matching in a step-index single-mode optical fiber. The OPCPA is pumped with chirped pulses that can be compressed to sub-30-fs duration. The signal (idler) pulses are generated at 905 nm (1270 nm), have 26 nJ (20 nJ) pulse energy, and are compressible to 70 fs duration. The short compressed signal and idler pulse durations are enabled by the broad bandwidth of the pump pulses. Numerical simulations guiding the design are consistent with the experimental results and predict that scaling to higher pulse energies will be possible. Forgoing a photonic crystal fiber for phase-matching offers practical advantages, including allowing energy scaling with mode area.

4.
Opt Lett ; 46(13): 3312-3315, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197444

RESUMO

Kerr beam cleaning in graded-index multimode fiber has been investigated in experiments with sub-nanosecond pulses and in experiments with femtosecond pulses at wavelengths where the dispersion is normal. We report a theoretical and experimental study of this effect with femtosecond pulses and anomalous dispersion. In this regime, only weak beam cleaning is observed experimentally, along with strong temporal evolution of the pulse. Numerical simulations exhibit the qualitative trends of the experiments.

5.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 628-644, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950019

RESUMO

Serial synchrotron crystallography (SSX) is enabling the efficient use of small crystals for structure-function studies of biomolecules and for drug discovery. An integrated SSX system has been developed comprising ultralow background-scatter sample holders suitable for room and cryogenic temperature crystallographic data collection, a sample-loading station and a humid `gloveless' glovebox. The sample holders incorporate thin-film supports with a variety of designs optimized for different crystal-loading challenges. These holders facilitate the dispersion of crystals and the removal of excess liquid, can be cooled at extremely high rates, generate little background scatter, allow data collection over >90° of oscillation without obstruction or the risk of generating saturating Bragg peaks, are compatible with existing infrastructure for high-throughput cryocrystallography and are reusable. The sample-loading station allows sample preparation and loading onto the support film, the application of time-varying suction for optimal removal of excess liquid, crystal repositioning and cryoprotection, and the application of sealing films for room-temperature data collection, all in a controlled-humidity environment. The humid glovebox allows microscope observation of the sample-loading station and crystallization trays while maintaining near-saturating humidities that further minimize the risks of sample dehydration and damage, and maximize working times. This integrated system addresses common problems in obtaining properly dispersed, properly hydrated and isomorphous microcrystals for fixed-orientation and oscillation data collection. Its ease of use, flexibility and optimized performance make it attractive not just for SSX but also for single-crystal and few-crystal data collection. Fundamental concepts that are important in achieving desired crystal distributions on a sample holder via time-varying suction-induced liquid flows are also discussed.


Assuntos
Cristalografia por Raios X/instrumentação , Desenho de Equipamento , Proteínas/química , Manejo de Espécimes/métodos , Síncrotrons/instrumentação
6.
Biomed Opt Express ; 12(4): 2496-2507, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996243

RESUMO

Two-photon fluorescence microscopy is a nonlinear imaging modality frequently used in deep-tissue imaging applications. A tunable-wavelength multicolor short-pulse source is usually required to excite fluorophores with a wide range of excitation wavelengths. This need is most typically met by solid-state lasers, which are bulky, expensive, and complicated systems. Here, we demonstrate a compact, robust fiber system that generates naturally synchronized femtosecond pulses at 1050 nm and 1200 nm by using a combination of gain-managed and Raman amplification. We image the brain of a mouse and view the blood vessels, neurons, and other cell-like structures using simultaneous degenerate and nondegenerate excitation.

7.
J Opt Soc Am B ; 37(6): 1790-1805, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34163098

RESUMO

We theoretically investigate methods of controlling pulse generation in normal-dispersion fiber optical parametric chirped-pulse amplifiers. We focus on high-energy, ultrashort pulses at wavelengths widely separated from that of the pump, and find that within this regime, a number of simple properties describe the essential phase and gain dynamics. Of primary importance are the relationships between the chirps of the pump, seed, and parametric gain, which we theoretically predict and then experimentally validate. By properly arranging these parameters, the signal and idler waves can be widely customized to fulfill a remarkable range of application requirements, spanning from narrowband to few-cycle.

8.
Opt Lett ; 44(4): 851-854, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768003

RESUMO

We investigated the possibility of reaching nanojoule-level pulse energies in a femtosecond erbium-doped fiber Mamyshev oscillator. In experiments, lasers generate stable pulse trains with energy up to 31.3 nJ, which is comparable to the highest achieved by prior ultrafast erbium fiber lasers. The pulse duration after a grating compressor is around 100 fs. However, as the pulse energy increases, the pulse quality degrades significantly, with a substantial fraction of the energy going into a picosecond pedestal. Numerical simulations agree with the experimental observations, and allow us to identify the gain spectrum and the nonlinearity of the erbium-doped fibers as challenges to the operation of such oscillators at high pulse energy.

9.
Opt Lett ; 43(21): 5331-5334, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382999

RESUMO

We demonstrate a fiber optical parametric chirped-pulse amplifier pumped in the normally dispersive regime. This approach is readily scalable, offering a route to microjoule-level, femtosecond pulses at new wavelengths. As a first demonstration, we pump with chirped pulses at 1.03 µm and seed with a continuous-wave beam at 0.85 µm, and are able to generate idlers at 1.3 µm with durations as short as 210 fs or energies as high as 180 nJ.

10.
Opt Lett ; 43(11): 2672-2675, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856390

RESUMO

We demonstrate a fiber oscillator that achieves 3 MW peak power, is easily started, and is environmentally stable. The Mamyshev oscillator delivers 190-nJ pulses that can be compressed externally to 35 fs duration. Accurate numerical modeling of the gain medium provides insight into the behavior and performance of the device.

11.
Opt Express ; 26(8): 9432-9463, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715895

RESUMO

Ultrafast fiber lasers have the potential to make applications of ultrashort pulses widespread - techniques not only for scientists, but also for doctors, manufacturing engineers, and more. Today, this potential is only realized in refractive surgery and some femtosecond micromachining. The existing market for ultrafast lasers remains dominated by solid-state lasers, primarily Ti:sapphire, due to their superior performance. Recent advances show routes to ultrafast fiber sources that provide performance and capabilities equal to, and in some cases beyond, those of Ti:sapphire, in compact, versatile, low-cost devices. In this paper, we discuss the prospects for future ultrafast fiber lasers built on new kinds of pulse generation that capitalize on nonlinear dynamics. We focus primarily on three promising directions: mode-locked oscillators that use nonlinearity to enhance performance; systems that use nonlinear pulse propagation to achieve ultrashort pulses without a mode-locked oscillator; and multimode fiber lasers that exploit nonlinearities in space and time to obtain unparalleled control over an electric field.

12.
Nature ; 554(7691): 179-180, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420495
13.
Nature ; 554(7691): 179-180, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32094558
14.
Optica ; 4(7): 831-834, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29214187

RESUMO

We demonstrate a fiber system which amplifies and compresses pulses from a gain-switched diode. A Mamyshev regenerator shortens the pulses and improves their coherence, enabling subsequent amplification by parabolic pre-shaping. As a result, we are able to control nonlinear effects and generate nearly transform-limited, 140-fs pulses with 13-MW peak power-an order-of-magnitude improvement over previous gain-switched diode sources. Seeding with a gain-switched diode results in random fluctuations of 2% in the pulse energy, which future work using known techniques may ameliorate. Further development may allow such systems to compete directly with sources based on modelocked oscillators in some applications while enjoying unparalleled robustness and repetition rate control.

15.
Science ; 358(6359): 94-97, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28983048

RESUMO

A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.

16.
J Opt Soc Am B ; 34(3): A37-A42, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331242

RESUMO

We explore parabolic pre-shaping as a means of generating and amplifying ultrashort pulses. We develop a theoretical framework for modeling the technique and use its conclusions to design a femtosecond fiber amplifier. Starting from 9 ps pulses, we obtain 4.3 µJ, nearly transform-limited pulses 275 fs in duration, simultaneously achieving over 40 dB gain and 33-fold compression. Finally, we show that this amplification scheme is limited by Raman scattering, and outline a method by which the pulse duration and energy may be further improved and tailored for a given application.

17.
Optica ; 4(6): 649-654, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30320157

RESUMO

We demonstrate a fiber source with the best performance from an ultrafast fiber oscillator to date. The ring-cavity Mamyshev oscillator produces ~50-nJ and ~40-fs pulses. The peak power is an order of magnitude higher than that of previous lasers with similar fiber mode area. This performance is achieved by designing the oscillator to support parabolic pulse formation which enables the management of unprecedented nonlinear phase shifts. Experimental results are limited by available pump power. Numerical simulations reveal key aspects of the pulse evolution, and realistically suggest that (after external compression) peak powers that approach 10 MW are possible from ordinary single-mode fiber. The combination of practical features such as environmental stability, established previously, with the performance described here make the Mamyshev oscillator extremely attractive for applications.

18.
Opt Lett ; 41(20): 4819-4822, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005839

RESUMO

We experimentally isolate and directly observe multimode solitons in few-mode graded-index fiber. We rely on Raman frequency shifts to spectrally isolate these multimode solitons. By varying the input energy and modal composition of the launched pulse, we observe a continuous variation of multimode solitons with different spatiotemporal properties. They exhibit an energy-volume relation that is distinct from those of single-mode and fully spatiotemporal solitons.

19.
Opt Lett ; 41(16): 3675-8, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519060

RESUMO

We observe a nonlinear spatial self-cleaning process for femtosecond pulses in graded-index (GRIN) multimode fiber (MMF). Pulses with ∼80 fs duration at 1030 nm are launched into GRIN MMF with 62.5 µm core. The near-field beam profile at the output end of the fiber evolves from a speckled pattern to a centered, bell-shaped transverse structure with increasing pulse energy. The experimental observations agree well with numerical simulations, which show that the Kerr nonlinearity underlies the process. This self-cleaning process may find applications in ultrafast pulse generation and beam-combining.

20.
Opt Lett ; 41(10): 2290-3, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27176985

RESUMO

We demonstrate an erbium fiber laser with self-similar pulse evolution inside a comb-like dispersion-decreasing fiber. We show numerically and experimentally that the comb-like dispersion-decreasing fiber works as well as an ideal one, and offers major practical advantages. The existence of a nonlinear attractor is verified by the invariant pulse chirp over a wide range of net cavity dispersion in experiments. The laser generates 1.3 nJ pulses with parabolic shapes and linear chirps, which can be dechirped to 37 fs. Comb-like dispersion-decreasing fiber should enable the generation of high-energy few-cycle pulses directly from a fiber oscillator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA