Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 12(1): 207-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987642

RESUMO

Osteoarthritis (OA) is a prevalent chronic whole-joint disease characterized by low-grade systemic inflammation, degeneration of joint-related tissues such as articular cartilage, and alteration of bone structures that can eventually lead to disability. Emerging evidence has indicated that synovium or articular cartilage-secreted extracellular vesicles (EVs) contribute to OA pathogenesis and physiology, including transporting and enhancing the production of inflammatory mediators and cartilage degrading proteinases. Bioactive components of EVs are known to play a role in OA include microRNA, long non-coding RNA, and proteins. Thus, OA tissues-derived EVs can be used in combination with advanced nanomaterial-based biosensors for the diagnostic assessment of OA progression. Alternatively, mesenchymal stem cell- or platelet-rich plasma-derived EVs (MSC-EVs or PRP-EVs) have high therapeutic value for treating OA, such as suppressing the inflammatory immune microenvironment, which is often enriched by pro-inflammatory immune cells and cytokines that reduce chondrocytes apoptosis. Moreover, those EVs can be modified or incorporated into biomaterials for enhanced targeting and prolonged retention to treat OA effectively. In this review, we explore recently reported OA-related pathological biomarkers from OA joint tissue-derived EVs and discuss the possibility of current biosensors for detecting EVs and EV-related OA biomarkers. We summarize the applications of MSC-EVs and PRP-EVs and discuss their limitations for cartilage regeneration and alleviating OA symptoms. Additionally, we identify advanced therapeutic strategies, including engineered EVs and applying biomaterials to increase the efficacy of EV-based OA therapies. Finally, we provide our perspective on the future of EV-related diagnosis and therapeutic potential for OA treatment.


Assuntos
Vesículas Extracelulares/metabolismo , Osteoartrite , Medicina de Precisão/métodos , Animais , Biomarcadores/metabolismo , Humanos , Osteoartrite/metabolismo , Osteoartrite/terapia
2.
Biofabrication ; 14(1)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788748

RESUMO

Hydrogels are of interest in cartilage tissue engineering due to their ability to support the encapsulation and chondrogenesis of mesenchymal stromal cells (MSCs). However, features such as hydrogel crosslink density, which can influence nutrient transport, nascent matrix distribution, and the stability of constructs during and after implantation must be considered in hydrogel design. Here, we first demonstrate that more loosely crosslinked (i.e. softer, ∼2 kPa) norbornene-modified hyaluronic acid (NorHA) hydrogels support enhanced cartilage formation and maturation when compared to more densely crosslinked (i.e. stiffer, ∼6-60 kPa) hydrogels, with a >100-fold increase in compressive modulus after 56 d of culture. While soft NorHA hydrogels mature into neocartilage suitable for the repair of articular cartilage, their initial moduli are too low for handling and they do not exhibit the requisite stability needed to withstand the loading environments of articulating joints. To address this, we reinforced NorHA hydrogels with polycaprolactone (PCL) microfibers produced via melt-electrowriting (MEW). Importantly, composites fabricated with MEW meshes of 400µm spacing increased the moduli of soft NorHA hydrogels by ∼50-fold while preserving the chondrogenic potential of the hydrogels. There were minimal differences in chondrogenic gene expression and biochemical content (e.g. DNA, GAG, collagen) between hydrogels alone and composites, whereas the composites increased in compressive modulus to ∼350 kPa after 56 d of culture. Lastly, integration of composites with native tissue was assessedex vivo; MSC-laden composites implanted after 28 d of pre-culture exhibited increased integration strengths and contact areas compared to acellular composites. This approach has great potential towards the design of cell-laden implants that possess both initial mechanical integrity and the ability to support neocartilage formation and integration for cartilage repair.


Assuntos
Cartilagem Articular , Hidrogéis , Condrogênese , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Engenharia Tecidual
3.
Biomaterials ; 269: 120667, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450585

RESUMO

Aberrant extracellular matrix (ECM) assembly surrounding implanted biomaterials is the hallmark of the foreign body response, in which implants become encapsulated in thick fibrous tissue that prevents their proper function. While macrophages are known regulators of fibroblast behavior, how their phenotype influences ECM assembly and the progression of the foreign body response is poorly understood. In this study, we used in vitro models with physiologically relevant macrophage phenotypes, as well as controlled release of macrophage-modulating cytokines from gelatin hydrogels implanted subcutaneously in vivo to investigate the role of macrophages in ECM assembly. Primary human macrophages were polarized to four distinct phenotypes, which have each been associated with fibrosis, including pro-inflammatory M1, pro-healing M2, and a hybrid M1/M2, generated by exposing macrophages to M1-and M2-promoting stimuli simultaneously. Additionally, macrophages were first polarized to M1 and then to M2 (M1→M2) to generate a phenotype typically observed during normal wound healing. Human dermal fibroblasts that were cultured in macrophage-conditioned media upregulated numerous genes involved in regulation of ECM assembly, especially in M2-conditioned media. Hybrid M1/M2 macrophage-conditioned media caused fibroblasts to produce a matrix with thicker and less aligned fibers, while M2 macrophage-conditioned media caused the formation of a more aligned matrix with thinner fibers. Gelatin methacrylate hydrogels containing interleukin-4 (IL4) and IL13-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were designed to promote the M2 phenotype in a murine subcutaneous in vivo model. NanoString multiplex gene expression analysis of hydrogel explants showed that hydrogels without cytokines caused mostly M1 phenotype markers to be highly expressed at an early time point (3 days), but the release of IL4+IL13 promoted upregulation of M2 markers and genes associated with regulation of ECM assembly, such as Col5a1 and Col6a1. Biochemical analysis and second harmonic generation microscopy showed that the release of IL4+IL13 increased total sulfated glycosaminoglycan content and decreased fibril alignment, which is typically associated with less fibrotic tissue. Together, these results show that hybrid M1/M2 macrophages regulate ECM assembly, and that shifting the balance towards M2 may promote architectural and compositional changes in ECM with enhanced potential for downstream remodeling.


Assuntos
Hidrogéis , Macrófagos , Animais , Materiais Biocompatíveis , Citocinas , Matriz Extracelular , Humanos , Camundongos , Fenótipo
4.
Adv Healthc Mater ; 8(4): e1801451, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30658015

RESUMO

Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.


Assuntos
Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis , Matriz Extracelular , Fibroblastos , Macrófagos , Animais , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/farmacologia , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Fibroblastos/imunologia , Fibroblastos/patologia , Fibrose , Humanos , Macrófagos/imunologia , Macrófagos/patologia
5.
Methods Mol Biol ; 1758: 161-176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29679330

RESUMO

Tissue engineering and regenerative medicine, facilitated by biomaterial-based therapies, hold promise for the repair, replacement, or regeneration of damaged tissue. The success or failure of all implanted biomaterials, ranging from stainless steel total joint replacements to naturally or synthetically derived skin grafts, is predominantly mediated by macrophages, the primary cell of the innate immune system. In an effort to better assess safety and efficacy of novel biomaterials, evaluating and understanding macrophage-biomaterial interactions is a necessary first step. Here, we describe the culture of macrophages on 3D biomaterials, such as decellularized human cortical bone or commercially available wound matrices, and subsequent analysis using gene expression and protein secretion to help understand how biomaterial properties may influence macrophage phenotype in vitro.


Assuntos
Materiais Biocompatíveis , Macrófagos , Engenharia Tecidual , Alicerces Teciduais , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Imunofenotipagem , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
ACS Biomater Sci Eng ; 4(4): 1233-1240, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33418656

RESUMO

Host-biomaterial interactions are critical determinants of the success or failure of an implant. However, detailed understanding of this process is limited due to a lack of dynamic tools for in vivo analyses. Here we characterize host-biomaterial interactions in zebrafish (Danio rerio), which are optically translucent and genetically tractable. Histological and immunohistochemical analyses following polypropylene suture implantation into adult zebrafish showed prolonged elevation of immune cell recruitment and collagen deposition, resembling a foreign body response. Live in vivo analysis showed that adsorption of the immunomodulatory cytokine interleukin-10 to a polystyrene microparticle, microinjected into transgenic larval zebrafish, inhibited neutrophil recruitment after 24 h compared to control microparticles, with no change in macrophage recruitment. This study illustrates that zebrafish are useful to investigate host-biomaterial interactions and have potential for high-throughput analysis of novel immunomodulatory biomaterials.

7.
Cell Mol Bioeng ; 10(5): 451-462, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29225709

RESUMO

INTRODUCTION: Chronic wounds remain a major clinical challenge. Human cryopreserved viable amniotic membrane (hCVAM) is among the most successful therapies, but the mechanisms of action remain loosely defined. Because proper regulation of macrophage behavior is critical for wound healing with biomaterial therapies, we hypothesized that hCVAM would positively regulate macrophage behavior in vitro, and that soluble factors released from the hCVAM would be important for this effect. MATERIALS AND METHODS: Primary human pro-inflammatory (M1) macrophages were seeded directly onto intact hCVAM or cultured in separation via transwell inserts (Soluble Factors) in the presence of pro-inflammatory stimuli (interferon-γ and lipopolysaccharide) to simulate the chronic wound environment. Macrophages were characterized after 1 and 6 days using multiplex gene expression analysis of 37 macrophage phenotype- and angiogenesis-related genes via NanoString™, and protein content from conditioned media collected at days 1, 3 and 6 was analyzed via enzyme linked immunosorbent assays. RESULTS AND DISCUSSION: Gene expression analysis showed that Soluble Factors promoted significant upregulation of pro-inflammatory marker IL1B on day 1 yet downregulation of TNF on day 6 compared to the M1 macrophage control. In contrast, intact hCVAM, which includes both extracellular matrix, viable cells, and soluble factors, promoted downregulation of pro-inflammatory markers TNF, CCL5 and CCR7 on day 1 and endothelial receptor TIE1 on day 6, and upregulation of the anti-inflammatory marker IL10 on day 6 compared to the M1 Control. Other genes related to inflammation and angiogenesis (MMP9, VEGF, SPP1, TGFB1, etc.) were differentially regulated between the Soluble Factors and intact hCVAM groups at both time points, though they were not expressed at significantly different levels compared to the M1 Control. Interestingly, Soluble Factors promoted increased secretion of the proinflammatory cytokine tumor necrosis factor-α (TNF-α), while direct contact with hCVAM inhibited secretion of TNF, relative to the M1 Control. Both Soluble Factors and intact hCVAM inhibited secretion of MMP9 and VEGF, pro-inflammatory proteins that are critical for angiogenesis and remodeling, compared to the M1 Control, with intact hCVAM having a stronger effect. CONCLUSIONS: In a simulated pro-inflammatory environment, intact hCVAM has distinct anti-inflammatory effects on primary human macrophages, and direct macrophage contact with intact hCVAM is required for these effects. These findings are important for the design of next generation immunomodulatory biomaterials for wound repair and regenerative medicine that may include living cells, soluble factors, or a controlled drug delivery system.

8.
Wound Repair Regen ; 24(3): 514-24, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26874797

RESUMO

Chronic wounds remain a major burden to the global healthcare system. Myriad wound matrices are commercially available but their mechanisms of action are poorly understood. Recent studies have shown that macrophages are highly influenced by their microenvironment, but it is not known how different biomaterials affect this interaction. Here, it was hypothesized that human macrophages respond differently to changes in biomaterial properties in vitro with respect to phenotype, including pro-inflammatory M1, anti-inflammatory M2a, known for facilitating extracellular matrix deposition and proliferation, and M2c, which has recently been associated with tissue remodeling. Using multiple donors, it was found that collagen scaffolds cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) promoted the least inflammatory phenotype in primary human macrophages compared with scaffolds cross-linked with formaldehyde or glutaraldehyde. Importantly, gene expression analysis trends were largely conserved between donors, especially TNFa (M1), CCL22 (M2a), and MRC1 (M2a). Then the response of primary and THP1 monocyte-derived macrophages to four commercially available wound matrices were compared-Integra Dermal Regeneration Template (Integra), PriMatrix Dermal Repair Scaffold (PriMatrix), AlloMend Acellular Dermal Matrix (AlloMend), and Oasis Wound Matrix (Oasis). Gene expression trends were different between primary and THP1 monocyte-derived macrophages for all six genes analyzed in this study. Finally, the behavior of primary macrophages cultured onto the wound matrices over time was analyzed. Integra and Oasis caused down-regulation of M2a markers CCL22 and TIMP3. PriMatrix caused up-regulation of TNFa (M1) and CD163 (M2c) and down-regulation of CCL22 and TIMP3 (both M2a). AlloMend caused up-regulation in CD163 (M2c). Lastly, Oasis promoted the largest increase in the combinatorial M1/M2 score, defined as the sum of M1 genes divided by the sum of M2 genes. This preliminary study suggested that biomaterials influenced the wound microenvironment to affect macrophage phenotype.


Assuntos
Derme Acelular , Materiais Biocompatíveis/farmacologia , Curativos Biológicos , Microambiente Celular/fisiologia , Macrófagos/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Teste de Materiais , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Fenótipo , Alicerces Teciduais
9.
Exp Cell Res ; 347(1): 1-13, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-26500109

RESUMO

The mechanisms by which macrophages control the inflammatory response, wound healing, biomaterial-interactions, and tissue regeneration appear to be related to their activation/differentiation states. Studies of macrophage behavior in vitro can be useful for elucidating their mechanisms of action, but it is not clear to what extent the source of macrophages affects their apparent behavior, potentially affecting interpretation of results. Although comparative studies of macrophage behavior with respect to cell source have been conducted, there has been no direct comparison of the three most commonly used cell sources: murine bone marrow, human monocytes from peripheral blood (PB), and the human leukemic monocytic cell line THP-1, across multiple macrophage phenotypes. In this study, we used multivariate discriminant analysis to compare the in vitro expression of genes commonly chosen to assess macrophage phenotype across all three sources of macrophages, as well as those derived from induced pluripotent stem cells (iPSCs), that were polarized towards four distinct phenotypes using the same differentiation protocols: M(LPS,IFN) (aka M1), M(IL4,IL13) (aka M2a), M(IL10) (aka M2c), and M(-) (aka M0) used as control. Several differences in gene expression trends were found among the sources of macrophages, especially between murine bone marrow-derived and human blood-derived M(LPS,IFN) and M(IL4,IL13) macrophages with respect to commonly used phenotype markers like CCR7 and genes associated with angiogenesis and tissue regeneration like FGF2 and MMP9. We found that the genes with the most similar patterns of expression among all sources were CXCL-10 and CXCL-11 for M(LPS,IFN) and CCL17 and CCL22 for M(IL4,IL13). Human PB-derived macrophages and human iPSC-derived macrophages showed similar gene expression patterns among the groups and genes studied here, suggesting that iPSC-derived monocytes have the potential to be used as a reliable cell source of human macrophages for in vitro studies. These findings could help select appropriate markers when testing macrophage behavior in vitro and highlight those markers that may confuse interpretation of results from experiments employing macrophages from different sources.


Assuntos
Polaridade Celular/genética , Perfilação da Expressão Gênica , Macrófagos/citologia , Macrófagos/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Análise Discriminante , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Análise dos Mínimos Quadrados , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fenótipo
10.
Biomaterials ; 37: 194-207, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453950

RESUMO

In normal tissue repair, macrophages exhibit a pro-inflammatory phenotype (M1) at early stages and a pro-healing phenotype (M2) at later stages. We have previously shown that M1 macrophages initiate angiogenesis while M2 macrophages promote vessel maturation. Therefore, we reasoned that scaffolds that promote sequential M1 and M2 polarization of infiltrating macrophages should result in enhanced angiogenesis and healing. To this end, we first analyzed the in vitro kinetics of macrophage phenotype switch using flow cytometry, gene expression, and cytokine secretion analysis. Then, we designed scaffolds for bone regeneration based on modifications of decellularized bone for a short release of interferon-gamma (IFNg) to promote the M1 phenotype, followed by a more sustained release of interleukin-4 (IL4) to promote the M2 phenotype. To achieve this sequential release profile, IFNg was physically adsorbed onto the scaffolds, while IL4 was attached via biotin-streptavidin binding. Interestingly, despite the strong interactions between biotin and streptavidin, release studies showed that biotinylated IL4 was released over 6 days. These scaffolds promoted sequential M1 and M2 polarization of primary human macrophages as measured by gene expression of ten M1 and M2 markers and secretion of four cytokines, although the overlapping phases of IFNg and IL4 release tempered polarization to some extent. Murine subcutaneous implantation model showed increased vascularization in scaffolds releasing IFNg compared to controls. This study demonstrates that scaffolds for tissue engineering can be designed to harness the angiogenic behavior of host macrophages towards scaffold vascularization.


Assuntos
Osso e Ossos/irrigação sanguínea , Polaridade Celular/efeitos dos fármacos , Citocinas/farmacologia , Sistemas de Liberação de Medicamentos , Fatores Imunológicos/farmacologia , Macrófagos/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Implantes Experimentais , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Tela Subcutânea/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA