Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(15): 10658-10680, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505188

RESUMO

The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.


Assuntos
Antimaláricos , Peptidomiméticos , Camundongos , Animais , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Ácido Aspártico Endopeptidases , Plasmodium falciparum/metabolismo , Proteínas de Protozoários
2.
Elife ; 112022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576255

RESUMO

The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.


Malaria kills over half a million people every year worldwide. A single-celled parasite called Plasmodium falciparum is responsible for the most lethal form of the disease. This malaria-causing agent is carried by mosquitos which transmit the parasite to humans through their bite. Once in the bloodstream, the parasite enters red blood cells and starts to replicate so it can go on to infect other cells. Like our cells, P. falciparum is surrounded by a membrane, and further membranes surround a number of its internal compartments. To make these protective coats, the parasite has to gather a nutrient called choline to form an important building block in the membrane. The parasite gets most of its choline by absorbing and digesting a molecule known as lysoPC found in the bloodstream of its host. However, it was unclear precisely how the parasite achieves this. To address this question, Ramaprasad, Burda et al. used genetic and metabolomic approaches to study how P. falciparum breaks down lysoPC. The experiments found that mutant parasites that are unable to make an enzyme called GDPD were able to infect red blood cells, but failed to grow properly once inside the cells. The mutant parasites took up less choline and, as a result, also made fewer membrane building blocks. The team were able to rescue the mutant parasites by supplying them with large quantities of choline, which allowed them to resume growing. Taken together, the findings of Ramaprasad, Burda et al. suggest that P. falciparum uses GDPD to extract choline from lysoPC when it is living in red blood cells. More and more P. falciparum parasites are becoming resistant to many of the drugs currently being used to treat malaria. One solution is to develop new therapies that target different molecules in the parasite. Since it performs such a vital role, GDPD may have the potential to be a future drug target.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Parasitos/metabolismo , Colina/metabolismo , Plasmodium falciparum/genética , Glicerilfosforilcolina/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
J Med Chem ; 65(19): 12535-12545, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36137276

RESUMO

Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.


Assuntos
Antimaláricos , Malária , Plasmodium , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Eritrócitos/metabolismo , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Serina , Inibidores de Serina Proteinase , Subtilisinas/química , Subtilisinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975947

RESUMO

Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.


Assuntos
Antimaláricos/farmacologia , Ácidos Borônicos/farmacologia , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Subtilisinas/química , Antimaláricos/síntese química , Sítios de Ligação , Ácidos Borônicos/síntese química , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Expressão Gênica , Humanos , Cinética , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/fisiologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/síntese química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Subtilisinas/antagonistas & inibidores , Subtilisinas/genética , Subtilisinas/metabolismo , Termodinâmica
5.
EMBO J ; 40(11): e107226, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932049

RESUMO

Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein ß-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in ß-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent ß-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.


Assuntos
Antimaláricos/farmacologia , Cisteína Proteases/metabolismo , Plasmodium falciparum/metabolismo , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/metabolismo , Células Cultivadas , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Proteólise , Proteínas de Protozoários/antagonistas & inibidores , Serina Proteases/metabolismo , Espectrina/metabolismo
6.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762339

RESUMO

Calcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in Plasmodium is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity. Stage-specific depletion of Plasmodium berghei ICM1 prevents gametogenesis due to a block in intracellular calcium mobilization, while conditional loss of Plasmodium falciparum ICM1 is detrimental for the parasite resulting in severely reduced calcium mobilization, defective egress, and lack of invasion. Our findings suggest that ICM1 is a key missing link in transducing PKG-dependent signals and provide previously unknown insights into atypical calcium homeostasis in malaria parasites essential for pathology and disease transmission.


Assuntos
Malária , Parasitos , Animais , Cálcio/metabolismo , Canais de Cálcio , Gametogênese , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Life Sci Alliance ; 3(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32179592

RESUMO

Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Plasmodium falciparum/genética , Alelos , Animais , Eritrócitos/metabolismo , Deleção de Genes , Malária/genética , Parasitos/metabolismo , Fenótipo , Fosforilação , Proteínas de Protozoários/genética
8.
Biochem J ; 477(2): 525-540, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31942933

RESUMO

Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.


Assuntos
Malária Falciparum/genética , Plasmodium falciparum/genética , Serina Proteases/química , Subtilisina/genética , Sequência de Aminoácidos/genética , Animais , Eritrócitos/parasitologia , Genoma/genética , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Plasmodium falciparum/patogenicidade , Proteólise , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Serina Proteases/genética , Subtilisina/química , Vacúolos/parasitologia
9.
FEBS J ; 286(20): 3998-4023, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31177613

RESUMO

Malarial dipeptidyl aminopeptidases (DPAPs) are cysteine proteases important for parasite development thus making them attractive drug targets. In order to develop inhibitors specific to the parasite enzymes, it is necessary to map the determinants of substrate specificity of the parasite enzymes and its mammalian homologue cathepsin C (CatC). Here, we screened peptide-based libraries of substrates and covalent inhibitors to characterize the differences in specificity between parasite DPAPs and CatC, and used this information to develop highly selective DPAP1 and DPAP3 inhibitors. Interestingly, while the primary amino acid specificity of a protease is often used to develop potent inhibitors, we show that equally potent and highly specific inhibitors can be developed based on the sequences of nonoptimal peptide substrates. Finally, our homology modelling and docking studies provide potential structural explanations of the differences in specificity between DPAP1, DPAP3, and CatC, and between substrates and inhibitors in the case of DPAP3. Overall, this study illustrates that focusing the development of protease inhibitors solely on substrate specificity might overlook important structural features that can be exploited to develop highly potent and selective compounds.


Assuntos
Aminoácidos/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Fragmentos de Peptídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Modelos Moleculares , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Conformação Proteica , Especificidade por Substrato
10.
PLoS Biol ; 17(5): e3000264, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31075098

RESUMO

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACß) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.


Assuntos
AMP Cíclico/metabolismo , Interações Hospedeiro-Parasita , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Parasitos/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Parasitos/ultraestrutura , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
11.
Eur J Med Chem ; 163: 344-352, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529637

RESUMO

Following up the open initiative of anti-malarial drug discovery, a GlaxoSmithKline (GSK) phenotypic screening hit was developed to generate hydroxyethylamine based plasmepsin (Plm) inhibitors exhibiting growth inhibition of the malaria parasite Plasmodium falciparum at nanomolar concentrations. Lead optimization studies were performed with the aim of improving Plm inhibition selectivity versus the related human aspartic protease cathepsin D (Cat D). Optimization studies were performed using Plm IV as a readily accessible model protein, the inhibition of which correlates with anti-malarial activity. Guided by sequence alignment of Plms and Cat D, selectivity-inducing structural motifs were modified in the S3 and S4 sub-pocket occupying substituents of the hydroxyethylamine inhibitors. This resulted in potent anti-malarials with an up to 50-fold Plm IV/Cat D selectivity factor. More detailed investigation of the mechanism of action of the selected compounds revealed that they inhibit maturation of the P. falciparum subtilisin-like protease SUB1, and also inhibit parasite egress from erythrocytes. Our results indicate that the anti-malarial activity of the compounds is linked to inhibition of the SUB1 maturase plasmepsin subtype Plm X.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Catepsina D/antagonistas & inibidores , Peptidomiméticos/farmacologia , Animais , Antimaláricos/química , Ácido Aspártico Endopeptidases/genética , Catepsina D/genética , Eritrócitos/parasitologia , Etilaminas/antagonistas & inibidores , Humanos , Peptidomiméticos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/química , Alinhamento de Sequência
12.
PLoS One ; 13(12): e0207621, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517136

RESUMO

The malaria parasite replicates within erythrocytes. The pathogenesis of clinical malaria is in large part due to the capacity of the parasite to remodel its host cell. To do this, intraerythrocytic stages of Plasmodium falciparum export more than 300 proteins that dramatically alter the morphology of the infected erythrocyte as well as its mechanical and adhesive properties. P. falciparum plasmepsin V (PfPMV) is an aspartic protease that processes proteins for export into the host erythrocyte and is thought to play a key role in parasite virulence and survival. However, although standard techniques for gene disruption as well as conditional protein knockdown have been previously attempted with the pfpmv gene, complete gene removal or knockdown was not achieved so direct genetic proof that PMV is an essential protein has not been established. Here we have used a conditional gene excision approach combining CRISPR-Cas9 gene editing and DiCre-mediated recombination to functionally inactivate the pfpmv gene. The resulting mutant parasites displayed a severe growth defect. Detailed phenotypic analysis showed that development of the mutant parasites was arrested early in the ring-to-trophozoite transition in the erythrocytic cycle following gene excision. Our findings are the first to elucidate the effects of PMV gene disruption, showing that it is essential for parasite viability in asexual blood stages. The mutant parasites can now be used as a platform to further dissect the Plasmodium protein export pathway.


Assuntos
Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/fisiologia , Plasmodium falciparum/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sistemas CRISPR-Cas , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Humanos , Mutação/genética , Plasmodium falciparum/genética , Inibidores de Proteases , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo
13.
PLoS One ; 12(1): e0170260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107409

RESUMO

Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.


Assuntos
Malária/enzimologia , Peptídeo Hidrolases/genética , Plasmodium/enzimologia , Sequência de Aminoácidos , Animais , Núcleo Celular/enzimologia , Modelos Animais de Doenças , Eritrócitos/parasitologia , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/química , Plasmodium/genética , Homologia de Sequência de Aminoácidos
14.
Cell Host Microbe ; 18(4): 433-44, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468747

RESUMO

The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress.


Assuntos
Eritrócitos/parasitologia , Proteína 1 de Superfície de Merozoito/metabolismo , Merozoítos/fisiologia , Plasmodium falciparum/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Espectrina/metabolismo , Subtilisinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteína 1 de Superfície de Merozoito/química , Merozoítos/enzimologia , Modelos Biológicos , Plasmodium falciparum/enzimologia , Ligação Proteica , Conformação Proteica , Proteólise
15.
Mol Microbiol ; 96(2): 368-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25599609

RESUMO

The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.


Assuntos
Antígenos de Protozoários/metabolismo , Malária Falciparum/parasitologia , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Motivos de Aminoácidos , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/sangue , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Reprodução Assexuada
16.
Nat Commun ; 5: 3726, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24785947

RESUMO

Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite.


Assuntos
Cálcio/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Subtilisina/metabolismo , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos
17.
J Biol Chem ; 288(44): 31971-83, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043620

RESUMO

Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte.


Assuntos
Membrana Celular/metabolismo , Eritrócitos/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Transporte Biológico Ativo , Membrana Celular/genética , Eritrócitos/parasitologia , Células HL-60 , Humanos , Lipídeos de Membrana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacúolos/metabolismo , Vacúolos/parasitologia
18.
Traffic ; 14(10): 1053-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23834729

RESUMO

The malaria merozoite invades erythrocytes in the vertebrate host. Iterative rounds of asexual intraerythrocytic replication result in disease. Proteases play pivotal roles in erythrocyte invasion, but little is understood about their mode of action. The Plasmodium falciparum malaria merozoite surface sheddase, PfSUB2, is one such poorly characterized example. We have examined the molecular determinants that underlie the mechanisms by which PfSUB2 is trafficked initially to invasion-associated apical organelles (micronemes) and then across the surface of the free merozoite. We show that authentic promoter activity is important for correct localization of PfSUB2, likely requiring canonical features within the intergenic region 5' of the pfsub2 locus. We further demonstrate that trafficking of PfSUB2 beyond an early compartment in the secretory pathway requires autocatalytic protease activity. Finally, we show that the PfSUB2 transmembrane domain is required for microneme targeting, while the cytoplasmic domain is essential for surface translocation of the protease to the parasite posterior following discharge from micronemes. The interplay of pre- and post-translational regulatory elements that coordinate subcellular trafficking of PfSUB2 provides the parasite with exquisite control over enzyme-substrate interactions.


Assuntos
Epitopos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Subtilisinas/metabolismo , Epitopos/genética , Epitopos/imunologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Expressão Gênica/genética , Expressão Gênica/imunologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Merozoítos/imunologia , Merozoítos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteólise , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Subtilisinas/genética , Subtilisinas/imunologia
19.
PLoS Pathog ; 9(5): e1003344, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675297

RESUMO

The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Merozoítos/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Transdução de Sinais/fisiologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Organelas/metabolismo
20.
J Chem Inf Model ; 53(3): 573-83, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23414065

RESUMO

PfSUB1, a subtilisin-like protease of the human malaria parasite Plasmodium falciparum, is known to play important roles during the life cycle of the parasite and has emerged as a promising antimalarial drug target. In order to provide a detailed understanding of the origin of binding determinants of PfSUB1 substrates, we performed molecular dynamics simulations in combination with MM-GBSA free energy calculations using a homology model of PfSUB1 in complex with different substrate peptides. Key interactions, as well as residues that potentially make a major contribution to the binding free energy, are identified at the prime and nonprime side of the scissile bond and comprise peptide residues P4 to P2'. This finding stresses the requirement for peptide substrates to interact with both prime and nonprime side residues of the PfSUB1 binding site. Analyzing the energetic contributions of individual amino acids within the peptide-PfSUB1 complexes indicated that van der Waals interactions and the nonpolar part of solvation energy dictate the binding strength of the peptides and that the most favorable interactions are formed by peptide residues P4 and P1. Hot spot residues identified in PfSUB1 are dispersed over the entire binding site, but clustered areas of hot spots also exist and suggest that either the S4-S2 or the S1-S2' binding site should be exploited in efforts to design small molecule inhibitors. The results are discussed with respect to which binding determinants are specific to PfSUB1 and, therefore, might allow binding selectivity to be obtained.


Assuntos
Plasmodium falciparum/química , Proteínas de Protozoários/química , Subtilisinas/química , Sítios de Ligação , Eletroquímica , Ligação de Hidrogênio , Modelos Moleculares , Peptídeos/química , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA