Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38785825

RESUMO

Executing flight operations demand that military personnel continuously perform tasks that utilize low- and high-order cognitive functions. The autonomic nervous system (ANS) is crucial for regulating the supply of oxygen (O2) to the brain, but it is unclear how sustained cognitive loads of different complexities may affect this regulation. Therefore, in the current study, ANS responses to low and high cognitive loads in hypoxic and normoxic conditions were evaluated. The present analysis used data from a previously conducted, two-factor experimental design. Healthy subjects (n = 24) aged 19 to 45 years and located near Fort Novosel, AL, participated in the parent study. Over two, 2-h trials, subjects were exposed to hypoxic (14.0% O2) and normoxic (21.0% O2) air while simultaneously performing one, 15-min and one, 10-min simulation incorporating low- and high-cognitive aviation-related tasks, respectively. The tests were alternated across five, 27-min epochs; however, only epochs 2 through 4 were used in the analyses. Heart rate (HR), HR variability (HRV), and arterial O2 saturation were continuously measured using the Warfighter MonitorTM (Tiger Tech Solutions, Inc., Miami, FL, USA), a previously validated armband device equipped with electrocardiographic and pulse oximetry capabilities. Analysis of variance (ANOVA) regression models were performed to compare ANS responses between the low- and high-cognitive-load assessments under hypoxic and normoxic conditions. Pairwise comparisons corrected for familywise error were performed using Tukey's test within and between high and low cognitive loads under each environmental condition. Across epochs 2 through 4, in both the hypoxic condition and the normoxic condition, the high-cognitive-load assessment (MATB-II) elicited heightened ANS activity, reflected by increased HR (+2.4 ± 6.9 bpm) and decreased HRV (-rMSSD: -0.4 ± 2.7 ms and SDNN: -13.6 ± 14.6 ms). Conversely, low cognitive load (ADVT) induced an improvement in ANS activity, with reduced HR (-2.6 ± 6.3 bpm) and increased HRV (rMSSD: +1.8 ± 6.0 ms and SDNN: vs. +0.7 ± 6.3 ms). Similar observations were found for the normoxic condition, albeit to a lower degree. These within-group ANS responses were significantly different between high and low cognitive loads (HR: +5.0 bpm, 95% CI: 2.1, 7.9, p < 0.0001; rMSSD: -2.2 ms, 95% CI: -4.2, -0.2, p = 0.03; SDNN: -14.3 ms, 95% CI: -18.4, -10.1, p < 0.0001) under the hypoxic condition. For normoxia, significant differences in ANS response were only observed for HR (+4.3 bpm, 95% CI: 1.2, 7.4, p = 0.002). Lastly, only high cognitive loads elicited significant differences between hypoxic and normoxic conditions but just for SDNN (-13.3 ms, 95% CI, -17.5, -8.9, p < 0.0001). Our study observations suggest that compared to low cognitive loads, performing high-cognitive-load tasks significantly alters ANS activity, especially under hypoxic conditions. Accounting for this response is critical, as military personnel during flight operations sustain exposure to high cognitive loads of unpredictable duration and frequency. Additionally, this is likely compounded by the increased ANS activity consequent to pre-flight activities and anticipation of combat-related outcomes.

2.
Front Sports Act Living ; 5: 1267631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090041

RESUMO

Background: Evidence shows relaxation techniques reactivate the parasympathetic nervous system (PNS) following physiological stressors such as exercise. As such, these techniques may be useful following exercise training of high intensity sports, like collegiate football. Purpose: To evaluate the impact of mindfulness and rest activities on PNS reactivation following training sessions, in a sample of Division-I collegiate, male football athletes. Methods: This study employed a cross-sectional, pre-post experimental design among 38 football athletes. Following three training sessions, each separated by one week, athletes were exposed to three groups: mindfulness, rest, and no-intervention. Athletes in the mindfulness group laid supine in a darkened room, while performing 15 min of guided breathing and body scans. The rest group remained seated in a lighted room, performing 15 min of restful activities (e.g., talking). The no-intervention group was instructed to perform usual post-training activities (e.g., showering). Heart rate (HR), respiration rate (RR) and two HR variability (HRV) indices were measured via an armband monitor (Warfighter Monitor, Tiger Tech Solutions, Inc, Miami, FL) equipped with electrocardiographic and photoplethysmography capabilities. HRV indices included standard deviation of the N-N intervals (SDNN) and root mean square of successive RR interval differences (rMSSD). Within and between-group differences were determined via analysis of variance (ANOVA) and corrected for multiple comparisons familywise error. Results: Statistically significant reductions in HR and RR were observed across all groups: -81.6, -66.4, -40.9 bpm and -31.7, -26.9, and -19.0 breaths⋅min-1, respectively. The mindfulness and rest groups exhibited a larger within-group reduction in HR and RR compared to the no-intervention group, p < 0.0000. Additionally, the mindfulness group showed a larger reduction in HR and RR compared to the rest group, p < 0.05. Post-intervention HR and RRs were significantly lower in the mindfulness group relative to the no-intervention group (77.0 vs. 120.1 bpm, respectively). Similar results were observed for RR (15.0 vs. 23.6 breaths⋅min-1, respectively) and HRV indices (SDNN: 46.9 vs. 33.1 ms and rMSSD: 17.9 vs. 13.8 ms, respectively) Athletes in the rest group showed significantly lower post-intervention HR (-30.2 bpm, 89.9 vs. 120.1 bpm, respectively), RR (-4.3 breaths⋅min-1, 19.3 vs. 23.6 breaths⋅min-1, respectively) and significantly higher HRV (SDNN: 42.9 vs. 33.1 ms and rMSSD: 16.7 vs. 13.8 ms, respectively) compared to their no-intervention counterparts. Conclusions: Our findings suggest that athletes engaging in either 15-minute guided mindfulness or rest activities (e.g., sitting) post training, may facilitate PNS reactivation. Implementing these strategies may accelerate recovery, improving performance. Longitudinal, randomized controlled trials among diverse sports are encouraged.

3.
Biology (Basel) ; 12(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37997997

RESUMO

Military aviators endure high cognitive loads and hypoxic environments during flight operations, impacting the autonomic nervous system (ANS). The synergistic effects of these exposures on the ANS, however, are less clear. This study investigated the simultaneous effects of mild hypoxia and high cognitive load on the ANS in military personnel. This study employed a two-factor experimental design. Twenty-four healthy participants aged between 19 and 45 years were exposed to mild hypoxia (14.0% O2), normoxia (21.0% O2), and hyperoxia (33.0% O2). During each epoch (n = 5), participants continuously performed one 15 min and one 10 min series of simulated, in-flight tasks separated by 1 min of rest. Exposure sequences (hypoxia-normoxia and normoxia-hyperoxia) were separated by a 60 min break. Heart rate (HR), heart rate variability (HRV), and O2 saturation (SpO2) were continuously measured via an armband monitor (Warfighter MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA). Paired and independent t-tests were used to evaluate differences in HR, HRV, and SpO2 within and between exposure sequences. Survival analyses were performed to assess the timing and magnitude of the ANS responses. Sympathetic nervous system (SNS) activity during hypoxia was highest in epoch 1 (HR: +6.9 bpm, p = 0.002; rMSSD: -9.7 ms, p = 0.003; SDNN: -11.3 ms, p = 0.003; SpO2: -8.4%, p < 0.0000) and appeared to slightly decline with non-significant increases in HRV. During normoxia, SNS activity was heightened, albeit non-significantly, in epoch 1, with higher HR (68.5 bpm vs. 73.0 bpm, p = 0.06), lower HRV (rMSSD: 45.1 ms vs. 38.7 ms, p = 0.09 and SDNN: 52.5 ms vs. 45.1 ms, p = 0.08), and lower SpO2 (-0.7% p = 0.05). In epochs 2-4, HR, HRV, and SpO2 trended towards baseline values. Significant between-group differences in HR, HRV, and O2 saturation were observed. Hypoxia elicited significantly greater HRs (+5.0, p = 0.03), lower rMSSD (-7.1, p = 0.03), lower SDNN (-8.2, p = 0.03), and lower SpO2 (-1.4%, p = 0.002) compared to normoxia. Hyperoxia appeared to augment the parasympathetic reactivation reflected by significantly lower HR, in addition to higher HRV and O2 relative to normoxia. Hypoxia induced a greater ANS response in military personnel during the simultaneous exposure to high cognitive load. The significant and differential ANS responses to varying O2 levels and high cognitive load observed highlight the importance of continuously monitoring multiple physiological parameters during flight operations.

4.
J Funct Morphol Kinesiol ; 8(4)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37873902

RESUMO

Current metrics like baseline heart rate (HR) and HR recovery fail in predicting overtraining (OT), a syndrome manifesting from a deteriorating autonomic nervous system (ANS). Preventing OT requires tracking the influence of internal physiological loads induced by exercise training programs on the ANS. Therefore, this study evaluated the predictability of a novel, exercise cardiac load metric on the deterioration of the ANS. Twenty male American football players, with an average age of 21.3 years and body mass indices ranging from 23.7 to 39.2 kg/m2 were included in this study. Subjects participated in 40 strength- and power-focused exercise sessions over 8 weeks and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Exercise cardiac load was the product of average training HR and duration. Baseline HR, HR variability (HRV), average HR, and peak HR were also measured. HR recovery was measured on the following day. HRV indices assessed included the standard deviation of NN intervals (SDNN) and root mean square of successive RR interval differences (rMSSD) Linear regression models assessed the relationships between each cardiac metric and HR recovery, with statistical significance set at α < 0.05. Subjects were predominantly non-Hispanic black (70%) and aged 21.3 (±1.4) years. Adjusted models showed that exercise cardiac load elicited the strongest negative association with HR recovery for previous day (ß = -0.18 ± 0.03; p < 0.0000), one-week (ß = -0.20 ± 0.03; p < 0.0000) and two-week (ß = -0.26 ± 0.03; p < 0.0000) training periods compared to average HR (ßetas: -0.09 to -0.02; p < 0.0000) and peak HR (ßetas: -0.13 to -0.23; p < 0.0000). Statistically significant relationships were also found for baseline HR (p < 0.0000), SDNN (p < 0.0000) and rMSSD (p < 0.0000). Exercise cardiac load appears to best predict ANS deterioration across one- to two-week training periods, showing a capability for tracking an athlete's physiological tolerance and ANS response. Importantly, this information may increase the effectiveness of exercise training programs, enhance performance, and prevent OT.

5.
J Funct Morphol Kinesiol ; 8(3)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754967

RESUMO

Fully restoring autonomic nervous system (ANS) function is paramount for peak sports performance. Training programs failing to provide sufficient recovery, especially during the in-season, may negatively affect performance. This study aimed to evaluate the influence of the physiological workload of collegiate football training on ANS recovery and function during the in-season. Football athletes recruited from a D1 college in the southeastern US were prospectively followed during their 13-week "in-season". Athletes wore armband monitors equipped with ECG and inertial movement capabilities that measured exercise cardiac load (ECL; total heartbeats) and maximum running speed during and baseline heart rate (HR), HR variability (HRV) 24 h post-training. These metrics represented physiological load (ECL = HR·Duration), ANS function, and recovery, respectively. Linear regression models evaluated the associations between ECL, baseline HR, HRV, and maximum running speed. Athletes (n = 30) were 20.2 ± 1.5 years, mostly non-Hispanic Black (80.0%). Negative associations were observed between acute and cumulative exposures of ECLs and running speed (ß = -0.11 ± 0.00, p < 0.0000 and ß = -0.15 ± 0.04, p < 0.0000, respectively). Similarly, negative associations were found between baseline HR and running speed (ß = -0.45 ± 0.12, 95% CI: -0.70, -0.19; p = 0.001). HRV metrics were positively associated with running speed: (SDNN: ß = 0.32 ± 0.09, p < 0.03 and rMSSD: ß = 0.35 ± 0.11, p < 0.02). Our study demonstrated that exposure to high ECLs, both acutely and cumulatively, may negatively influence maximum running speed, which may manifest in a deteriorating ANS. Further research should continue identifying optimal training: recovery ratios during off-, pre-, and in-season phases.

6.
Heliyon ; 9(7): e18125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539237

RESUMO

The autonomic nervous system (ANS) is profoundly affected by high intensity exercise. However, evidence is less clear on ANS recovery and function following prolonged bouts of high intensity exercise, especially in non-endurance athletes. Therefore, this study aimed to investigate the relationships between duration and intensity of acute exercise training sessions and ANS recovery and function in Division I football athletes. Fifty, male football athletes were included in this study. Subjects participated in 135 days of exercise training sessions throughout the 25-week season and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Intensity was measured via heart rate (HR) during an 'active state', defined as HR ≥ 85 bpm. Further, data-driven intensity thresholds were used and included HR < 140 bpm, HR < 150 bpm, HR < 160 bpm, HR ≥ 140 bpm, HR ≥ 150 bpm and HR ≥ 160 bpm. Baseline HR and HR recovery were measured and represented ANS recovery and function 24h post-exercise. Linear regression models assessed the relationships between time spent at the identified intensity thresholds and ANS recovery and function 24h post-exercise. Statistical significance set at α < 0.05. Athletes participated in 128 training sessions, totaling 2735 data points analyzed. Subjects were predominantly non-Hispanic black (66.0%), aged 21.2 (±1.5) years and average body mass index of 29.2 (4.7) kg⋅(m2)-1. For baseline HR, statistically significant associations between duration and next-day ANS recovery were observed at HR < 140 bpm (ß = -0.08 ± 0.02, R2 = 0.31, p < 0.001), HR above 150 and 160 bpm intensity thresholds (ß = 0.25 ± 0.02, R2 = 0.69, p < 0.0000 and ß = 0.59 ± 0.06, R2 = 0.71, p < 0.0000). Similar associations were observed for HR recovery: HR < 140 bpm (ß = 0.15 ± 0.03, R2 = 0.43, p < 0.0000) and HR above 150 and 160 bpm (ß = -0.33 ± 0.03, R2 = 0.73, p < 0.0000 and ß = -0.80 ± 0.06, R2 = 0.71, p < 0.0000). The strengths of these associations increased with increasing intensity, HR ≥ 150 and 160 bpm (baseline HR: ß range = 0.25 vs 0.59, R2: 0.69 vs 0.71 and HR recovery: ß range = -0.33 vs -0.80, R2 = 0.73 vs 0.77). Time spent in lower intensity thresholds, elicited weaker associations with ANS recovery and function 24h post-exercise, with statistical significance observed only at HR < 140 bpm (ß = -0.08 ± 0.02, R2 = 0.31, p < 0.001). The findings of this study showed that ANS recovery and function following prolonged high intensity exercise remains impaired for more than 24h. Strength and conditioning coaches should consider shorter bouts of strenuous exercise and extending recovery periods within and between exercise training sessions.

7.
Mil Med ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852874

RESUMO

INTRODUCTION: Photoplethysmography (PPG) is the science behind many commonly used medical devices such as the pulse oximeter. PPG changes, herein as "PPG dropouts," have been described in existing in vitro studies following artificially induced clot activation. Because COVID-19 causes increased arterial, venous, and microvascular clot formation, our hypothesis is that PPG dropouts identified in vitro can also be found in vivo in patients with COVID-19. The aim of this study is to evaluate PPG recordings and D-dimer levels for patients hospitalized with COVID-19 and compare them with the PPG tracings from non-COVID controls. MATERIALS AND METHODS: PPG recordings were obtained for 197 ICU patients with COVID-19 and 300 non-COVID controls. PPG tracings were obtained using a TigerTech CovidPlus monitor, which received U.S. FDA emergency use authorization in March 2020 for monitoring the biometrics of patients with COVID-19 and featured unfiltered red and infrared spectrum PPG monitoring. D-dimer lab results were also recorded whenever available. RESULTS: The results demonstrated significant differences in the prevalence rate of PPG dropout among patients with COVID-19 vs. non-COVID controls. The median PPG dropout rate was 0.58 for COVID-19 patients (median 0.58, IQR 0.42-0.72, P < .05) as opposed to a median 0.0 for non-COVID patients (median 0.0, IQR 0.0-0.0, P < .05). Furthermore, at least one incidence of PPG dropout was detected in 100% of COVID-19 patients, as opposed to 2.3% of non-COVID controls (P < .05). PPG dropout also correlated closely with the normalized serum D-dimer levels taken on the same day. The change in the normalized D-dimer levels was plotted against the change in PPG dropout, and a line of best fit was created. Linear regression resulted in R2 = 0.743 (P < .05), indicating that changes in the PPG dropout rate correlate with hemorheological changes in COVID-19 patients. CONCLUSIONS: PPG dropout, like D-dimer, may not be specific for COVID-19. However, the inflammatory nature of the disease and the prevalence of prolonged ICU created a large sample size and allowed the authors to observe PPG changes in vivo in a statistically meaningful way. Further confirmatory studies are needed to confirm the potential application of PPG dropout as a measure of inflammation in other disease processes.

8.
Sports (Basel) ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38251282

RESUMO

Exercising with elevated core temperatures may negatively affect autonomic nervous system (ANS) function. Additionally, longer training duration under higher core temperatures may augment these negative effects. This study evaluated the relationship between exercise training duration and 24 h ANS recovery and function at ≥37 °C, ≥38 °C and ≥39 °C core temperature thresholds in a sample of male Division I (D1) collegiate American football athletes. Fifty athletes were followed over their 25-week season. Using armband monitors (Warfighter MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA), core temperature (°C) and 24 h post-exercise baseline heart rate (HR), HR recovery and heart rate variability (HRV) were measured. For HRV, two time-domain indices were measured: the root mean square of the standard deviation of the NN interval (rMSSD) and the standard deviation of the NN interval (SDNN). Linear regression models were performed to evaluate the associations between exercise training duration and ANS recovery (baseline HR and HRV) and function (HR recovery) at ≥37 °C, ≥38 °C and ≥39 °C core temperature thresholds. On average, the athletes were 21.3 (± 1.4) years old, weighed 103.0 (±20.2) kg and had a body fat percentage of 15.4% (±7.8%, 3.0% to 36.0%). The duration of training sessions was, on average, 161.1 (±40.6) min and they ranged from 90.1 to 339.6 min. Statistically significant associations between training duration and 24 h ANS recovery and function were observed at both the ≥38.0 °C (baseline HR: ß = 0.10 ± 0.02, R2 = 0.26, p < 0.0000; HR recovery: ß = -0.06 ± 0.02, R2 = 0.21, p = 0.0002; rMSSD: ß = -0.11 ± 0.02, R2 = 0.24, p < 0.0000; and SDNN: ß = -0.16 ± 0.04, R2 = 0.22, p < 0.0000) and ≥39.0 °C thresholds (ß = 0.39 ± 0.05, R2 = 0.62, p < 0.0000; HR recovery: ß = -0.26 ± 0.04, R2 = 0.52, p < 0.0000; rMSSD: ß = -0.37 ± 0.05, R2 = 0.58, p < 0.0000; and SDNN: ß = -0.67 ± 0.09, R2 = 0.59, p < 0.0000). With increasing core temperatures, increases in slope steepness and strengths of the associations were observed, indicating accelerated ANS deterioration. These findings demonstrate that exercise training under elevated core temperatures (≥38 °C) may negatively influence ANS recovery and function 24 h post exercise and progressively worsen.

9.
J Funct Morphol Kinesiol ; 9(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535414

RESUMO

Sport coaches increasingly rely on external load metrics for designing effective training programs. However, their accuracy in estimating internal load is inconsistent, and their ability to predict autonomic nervous system (ANS) deterioration is unknown. This study aimed to evaluate the relationships between internal and external training load metrics and ANS recovery and function in college football players. Football athletes were recruited from a D1 college in the southeastern US and prospectively followed for 27 weeks. Internal load was estimated via exercise cardiac load (ECL; average training heartrate (HR) × session duration) and measured with an armband monitor equipped with electrocardiographic capabilities (Warfighter MonitorTM (WFM), Tiger Tech Solutions, Miami, FL, USA). External load was estimated via the summation and rate of acceleration and decelerations as measured by a triaxial accelerometer using the WFM and an accelerometer-based (ACCEL) device (Catapult Player Load, Catapult Sports, Melbourne, Australia) worn on the mid-upper back. Baseline HR, HR variability (HRV) and HR recovery served as the indicators for ANS recovery and function, respectively. For HRV, two, time-domain metrics were measured: the standard deviation of the NN interval (SDNN) and root mean square of the standard deviation of the NN interval (rMSSD). Linear regression models evaluated the associations between ECL, ACCEL, and the indicators of ANS recovery and function acutely (24 h) and cumulatively (one- and two-week). Athletes (n = 71) were male and, on average, 21.3 ± 1.4 years of age. Acute ECL elicited stronger associations for 24 h baseline HR (R2 0.19 vs. 0.03), HR recovery (R2 0.38 vs. 0.07), SDNN (R2 0.19 vs. 0.02) and rMSSD (R2 0.19 vs. 0.02) compared to ACCEL. Similar results were found for one-week: 24 h baseline HR (R2 0.48 vs. 0.05), HR recovery (R2 0.55 vs. 0.05), SDNN (R2 0.47 vs. 0.05) and rMSSD (R2 0.47 vs. 0.05) and two-week cumulative exposures: 24 h baseline HR (R2 0.52 vs. 0.003), HR recovery (R2 0.57 vs. 0.05), SDNN (R2 0.52 vs. 0.003) and rMSSD (R2 0.52 vs. 0.002). Lastly, the ACCEL devices weakly correlated with ECL (rho = 0.47 and 0.43, p < 0.005). Our findings demonstrate that ACCEL poorly predicted ANS deterioration and underestimated internal training load. ACCEL devices may "miss" the finite window for preventing ANS deterioration by potentially misestimating training loads acutely and cumulatively.

11.
J Electrocardiol ; 67: 136-141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242911

RESUMO

INTRODUCTION: The Tiger Tech Warfighter Monitor (WFM) is a novel single-limb device for ECG acquisition. The WFM provides true (not derived) single limb Electrocardiogram monitoring (ECG) to provide heart rate and R-R interval monitoring between QRS complexes. Herein, we evaluate the diagnostic accuracy of the WFM heart rate, R-R interval monitoring, and heart rate variability monitoring in comparison to a 2­lead chest ECG. METHODS: Data was collected under Institutional Review Board (IRB) approval. Patients available within our institution's pre-operative holding unit were randomly selected to undergo simultaneous chest and WFM ECG monitoring. 3-5-min measurements were taken depending on the patient's availability. Data was saved to two separate mobile phones and time-stamped for synchronization. A proprietary Tiger Tech extraction algorithm was used to tag proper features on both the WFM 1-Limb ECG and Chest ECG data files. A separate algorithm was then used to compare the beat-to-beat variations between the ECGs. RESULTS: Data was extracted and analyzed on 26 subjects. Linear regression of heart rate analysis revealed excellent correlations with an R2 of 0.99 (p < 0.05). Similar linear regression evaluation of R-R interval correlation demonstrated a mean R2 value of 0.95 (p < 0.05). Statistically significant correlation was achieved in all 26 included study participants. Heart rate variability also achieved excellent correlation (SDNN R2 = 0.997, RMSSD R2 = 0.995, LnRMSSD R2 = 0.992, p << 0.05). CONCLUSION: Results demonstrate that the WFM achieves excellent correlation with chest ECG for heart rate, R-R internals, and heart rate variability.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Algoritmos , Arritmias Cardíacas/diagnóstico , Frequência Cardíaca , Humanos , Monitorização Fisiológica
12.
Mil Med ; 186(1-2): e34-e38, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33206183

RESUMO

INTRODUCTION: Increases in C-reactive protein (CRP) are used to track the inflammatory process of COVID-19 and are associated with disease state progression. Decreases in heart rate variability (HRV) correlate with worsening of disease states. This observational study tracks changes in HRV relative to changes in CRP in COVID-19 patients. MATERIALS AND METHODS: In accordance with an Institutional Review Board-approved study, 17 patients were followed using the wearable, noninvasive Tiger Tech Warfighter Monitor (WFM) that records HRV from a single limb electrocardiogram. Intermittent, daily short-segment data sets of 5 to 7 minutes over a minimum of 7 days were analyzed. Changes in HRV were compared to changes in CRP. RESULTS: Decreases in HRV of greater than 40% preceded a 50% increase in CRP during the ensuing 72 hours in 10 of the 12 patients who experienced a dramatic rise in CRP. The effectiveness of HRV as a leading indicator of a rise in CRP was evaluated; the sensitivity, specificity, positive predictive value, and negative predictive value for 40% decreases in HRV preceding 50% increases in CRP were 83.3%, 75%, 90.9%, and 60%, respectively. CONCLUSION: Substantial decreases in HRV preceded elevations in CRP in the ensuing 72 hours with a 90.9% positive predictive value. Early detection of increasing inflammation may prove vital in mitigating the deleterious effects of an abnormal inflammatory response, particularly in COVID-19 patients. This capability could have a major impact in triage and care of moderate to severe COVID-19 patients in major medical centers as well as field hospitals. This study demonstrates the potential value of short-segment, intermittent HRV analysis in COVID-19 patients.

14.
J Thorac Dis ; 9(Suppl 7): S614-S623, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28740715

RESUMO

The use of minimally, or less invasive, approaches to cardiac valve surgery has increased over the past decade. Because of its less traumatic nature, early studies in lower risk patients demonstrated the approach to be associated with an enhanced recovery, increased patient satisfaction, and good operative outcomes. With time, despite a steep learning curve, surgeons expanded this approach to perform more complex procedures, and include patients with more co-morbidity. The aim of this publication is to review the current literature involving the use of minimally invasive valve surgery (MIVS) in higher-risk patients.

15.
J Thorac Dis ; 9(Suppl 7): S629-S634, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28740717

RESUMO

Open total arch replacement (TAR) has become safer with refinements in cerebral protection techniques. The frequent extension of aortic arch aneurysms into the descending thoracic aorta customarily requires a two-staged conventional elephant trunk procedure, carrying relatively high mortality and morbidity risks and high rates of rupture in the interval between the two open surgeries. The technical demands and invasive nature of TAR has therefore precluded many high-risk patients from being surgical candidates for aneurysm repair. As a result, hybrid techniques and approaches to the aortic arch have become common since the adoption of thoracic endovascular aortic repair (TEVAR) and advancement in the commercial grafts that are available. The results of hybrid aortic arch repairs have been encouraging, though with higher rates of re-interventions than TAR and variable reported rates of stroke and spinal cord ischemia. The aim of this publication is to review the current literature on hybrid repair of aortic arch aneurysms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA