Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pediatrics ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864114

RESUMO

In 2020, the US Food and Drug Administration approved liraglutide (glucagon-like-peptide-1-receptor-agonist) as an adjunctive therapy for weight management in adolescents aged 12 to 18 years in combination with a reduced-calorie diet and increased physical activity. The 2023 American Academy of Pediatrics guidelines recommend pharmacotherapy with glucagon-like-peptide-1-receptor-agonist as a second-line therapy in obesity management. Although reports in adults have suggested a link between liraglutide and adverse effects including hepatic injury and acute kidney injury (AKI), these effects have not previously been reported among adolescents treated with liraglutide for weight loss. We present a 17-year-old male who developed AKI and evidence of hepatic injury (significant elevation of hepatic transaminases) after 3 months administration of the lowest dosage of liraglutide (0.6 mg/day) for management of class III obesity. The patient experienced significant loss of appetite, weight loss, and melancholy during the treatment period. One month after discontinuing liraglutide, his mood had improved, his liver enzymes had returned to normal, and AKI had resolved. The Adverse Drug Reaction Probability Scale suggested a high likelihood of a causative association between liraglutide and his symptoms. Our report highlights the importance of vigilance in monitoring for these potential adverse effects among adolescents treated for obesity with any dose of liraglutide.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38758194

RESUMO

Background: We assessed real-life glycemic outcomes and predictors of composite measures of optimal glycemic control in children and adolescents with type 1 diabetes (T1D) during their initial 12 months of the MiniMed™ 780G use. Methods: This prospective observational multicenter study collected demographic, clinical, and 2-week 780G system data at five time points. Optimal glycemic control was defined as a composite glycemic control (CGC) score requiring the attainment of four recommended continuous glucose monitoring (CGM) targets, as well as the glycemia risk index (GRI) of hypoglycemia and hyperglycemia and composite CGM index (COGI). Outcome measures included longitudinal changes in multiple glycemic parameters and CGC, GRI, and COGI scores, as well as predictors of these optimal measures. Results: The cohort included 93 children, 43% girls, with a median age of 15.1 years (interquartile range [IQR] 12.9,17.0). A longitudinal analysis adjusted for age and socioeconomic index yielded a significant improvement in glycemic control for the entire cohort (ptime < 0.001) after the transition to 780G. The mean hemoglobin A1c (HbA1c) (SE) was 8.65% (0.12) at baseline and dropped by >1% after 1 year to 7.54% (0.14) (ptime < 0.001). Optimal glycemic control measures improved at 12 months post 780G; CGC improved by 5.6-fold (P < 0.001) and was attained by 24% of the participants, the GRI score improved by 10-fold (P = 0.009) and was achieved by 10% of them, and the COGI improved by 7.6-fold (P < 0.001) and was attained by 20% of them. Lower baseline HbA1c levels and increased adherence to Advanced Hybrid Closed-Loop (AHCL) usage were predictors of achieving optimal glycemic control. Conclusions: The AHCL 780G system enhances glycemic control in children and adolescents with T1D, demonstrating improvements in HbA1c and CGM metrics, albeit most participants did not achieve optimal glycemic control. This highlights yet ongoing challenges in diabetes management, emphasizing the need for continued proactive efforts on the part of health care professionals, youth, and caregivers.

3.
Nat Commun ; 9(1): 5068, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498206

RESUMO

Methylation patterns of circulating cell-free DNA (cfDNA) contain rich information about recent cell death events in the body. Here, we present an approach for unbiased determination of the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues and cell types. The method is validated using in silico simulations as well as in vitro mixes of DNA from different tissue sources at known proportions. We show that plasma cfDNA of healthy donors originates from white blood cells (55%), erythrocyte progenitors (30%), vascular endothelial cells (10%) and hepatocytes (1%). Deconvolution of cfDNA from patients reveals tissue contributions that agree with clinical findings in sepsis, islet transplantation, cancer of the colon, lung, breast and prostate, and cancer of unknown primary. We propose a procedure which can be easily adapted to study the cellular contributors to cfDNA in many settings, opening a broad window into healthy and pathologic human tissue dynamics.


Assuntos
Ácidos Nucleicos Livres/genética , Algoritmos , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Células Cultivadas , Neoplasias do Colo/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Hepatócitos/metabolismo , Humanos , Leucócitos/metabolismo , Neoplasias Pulmonares/genética , Regiões Promotoras Genéticas/genética , Sepse/genética
4.
PLoS One ; 11(2): e0149995, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919188

RESUMO

Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic ß-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in ß-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in ß-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in ß-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.


Assuntos
Aneuploidia , Crescimento Celular , Transformação Celular Neoplásica/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Transformação Celular Neoplásica/patologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína S6 Ribossômica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA