Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35451467

RESUMO

The mammalian tumor suppressor PTEN has well-established lipid phosphatase and protein phosphatase activities. DAF-18, the Caenorhabditis elegans ortholog of PTEN, has a high degree of conservation in the catalytic domain, and human PTEN complements a null allele of daf-18, suggesting conserved protein function. Insights gleaned from studies of mammalian PTEN have been applied to studies of DAF-18 in C. elegans, including predicted enzymatic properties of mutants. Here, we characterize DAF-18 missense mutants previously treated as selectively disrupting either protein or lipid phosphatase activity in genetic assays to connect distinct phenotypes to specific enzymatic activities of DAF-18/PTEN. We analyze the ability of these mutants to maintain quiescence of the somatic gonad and germ line in dauer larvae, a state of diapause during which development is suspended. We show that transgenes expressing either the putative lipid phosphatase-deficient or putative protein phosphatase-deficient form fail to complement a daf-18 null allele, and that the corresponding homozygous endogenous missense mutant alleles fail to maintain developmental quiescence. We also show that the endogenous daf-18 missense alleles fail to complement each other, suggesting that one or both of the missense forms are not activity-selective. Furthermore, homozygous daf-18 missense mutants have a more severe phenotype than a daf-18 null mutant, suggesting the presence of functionally compromised mutant DAF-18 is more deleterious than the absence of DAF-18. We discuss how these genetic properties complicate the interpretation of genetic assays to associate specific enzymatic activities with specific phenotypes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Gônadas/metabolismo , Larva , Lipídeos , Mamíferos , Mutação
2.
Curr Top Dev Biol ; 140: 55-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32591083

RESUMO

In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.


Assuntos
Padronização Corporal/genética , Drosophila/genética , Embrião não Mamífero/metabolismo , Oócitos/metabolismo , Oogênese/genética , Transdução de Sinais/genética , Animais , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/citologia
3.
G3 (Bethesda) ; 9(1): 47-60, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30385460

RESUMO

The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) and epidermal growth factor receptor (EGFR) signaling pathways are conserved regulators of tissue patterning, morphogenesis, and other cell biological processes. During Drosophila oogenesis, these pathways determine the fates of epithelial follicle cells (FCs). JAK/STAT and EGFR together specify a population of cells called the posterior follicle cells (PFCs), which signal to the oocyte to establish the embryonic axes. In this study, whole genome expression analysis was performed to identify genes activated by JAK/STAT and/or EGFR. We observed that 317 genes were transcriptionally upregulated in egg chambers with ectopic JAK/STAT and EGFR activity in the FCs. The list was enriched for genes encoding extracellular matrix (ECM) components and ECM-associated proteins. We tested 69 candidates for a role in axis establishment using RNAi knockdown in the FCs. We report that the signaling protein Semaphorin 1b becomes enriched in the PFCs in response to JAK/STAT and EGFR. We also identified ADAM metallopeptidase with thrombospondin type 1 motif A (AdamTS-A) as a novel target of JAK/STAT in the FCs that regulates egg chamber shape. AdamTS-A mRNA becomes enriched at the anterior and posterior poles of the egg chamber at stages 6 to 7 and is regulated by JAK/STAT. Altering AdamTS-A expression in the poles or middle of the egg chamber produces rounder egg chambers. We propose that AdamTS-A regulates egg shape by remodeling the basement membrane.


Assuntos
Proteína ADAMTS1/genética , Proteínas de Drosophila/genética , Receptores ErbB/genética , Morfogênese/genética , Oogênese/genética , Receptores de Peptídeos de Invertebrados/genética , Animais , Polaridade Celular/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/genética , Janus Quinases/genética , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA