RESUMO
Wastewater treatment plants (WWTPs) are thought to be a major disseminating source of antibiotic resistance (AR) to the environment, establishing a crucial connection between human and environmental resistome. The objectives of this study were to determine how wastewater effluents impact microbiome and resistome of freshwater and fish, and identify potential AR-carrying clinically relevant pathogens in these matrices. We analyzed wastewater influent and effluent from four WWTPs in three metropolitan areas of Ohio, USA via shotgun metagenomic sequencing. We also sequenced river water and fish guts from three reaches (upstream, at the WWTP outfall, and downstream). Notably, we observed a decline in microbiome diversity and AR gene abundance from wastewater to the receiving river. We also found significant differences by reach and trophic level (diet) in beta-diversity of the fish gut microbiomes. SourceTracker revealed that 0.443 and 0.248 more of the of the fish gut microbiome was sourced from wastewater effluent in fish from the outfall and downstream locations, respectively, compared to upstream fish. Additionally, AR bacteria of public health concern were annotated in effluent and river water samples, indicating potential concern for human exposure. In summary, our findings show the continued role of wastewater as a significant AR reservoir and underscores the considerable impact of wastewater discharge on aquatic wildlife, which highlights the One Health nature of this issue.
RESUMO
The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored blaNDM-1 genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The blaNDM-1 genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the blaNDM-1 AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance.
RESUMO
Since their commercialization, scientists have known that antimicrobial use kills or inhibits susceptible bacteria while allowing resistant bacteria to survive and expand. Today there is widespread antimicrobial resistance (AMR), even to antimicrobials of last resort such as the carbapenems, which are reserved for use in life-threatening infections. It is often convenient to assign responsibility for this global health crisis to the users and prescribers of antimicrobials. However, we know that animals never treated with antimicrobials carry clinically relevant AMR bacteria and genes. The causal pathway from bacterial susceptibility to resistance is not simple, and dissemination is cyclical rather than linear. Amplification of AMR occurs in healthcare environments and on farms where frequent exposure to antimicrobials selects for resistant bacterial populations. The recipients of antimicrobial therapy release antimicrobial residues, resistant bacteria, and resistance genes in waste products. These are reduced but not removed during wastewater and manure treatment and enter surface waters, soils, recreational parks, wildlife, and fields where animals graze and crops are grown for human and animal consumption. The cycle is complete when a patient carrying AMR bacteria is treated with antimicrobials that amplify the resistant bacterial populations. Reducing the development and spread of AMR requires a One Health approach with the combined commitment of governments, medical and veterinary professionals, agricultural industries, food and feed processors, and environmental scientists. In this review and in the companion Currents in One Health by Ballash et al, JAVMA, April 2024, we highlight just a few of the steps of the complex cyclical causal pathway that leads to the amplification, dissemination, and maintenance of AMR.
Assuntos
Anti-Infecciosos , Saúde Única , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Animais Selvagens , BactériasRESUMO
Once considered to be a simple cause-and-effect relationship with localized impact, the concept of how antimicrobial use drives antimicrobial resistance is now recognized as a complex, transdisciplinary problem on a global scale. While the issue of antimicrobial resistance is often studied and addressed at the antimicrobial-human or antimicrobial-animal treatment interface, the role of the environment in the One Health dynamics of antimicrobial resistance is not as well understood. Antimicrobial-resistant bacteria, including those resistant to carbapenem drugs, are emerging in veterinary clinical environments, on farms, and in natural habitats. These multidrug-resistant bacteria can colonize our livestock and companion animals and are later disseminated into the environment, where they contaminate surface waters and colonize wildlife. From here, the One Health transmission cycle of antimicrobial-resistant bacteria is completed as environmental reservoirs can serve as sources of antimicrobial resistance transmission into human or animal healthcare settings. In this review, we utilize a One Health perspective to evaluate how environments become contaminated and, in turn, become reservoirs that can colonize and infect our veterinary species, and how the veterinary field is combating environmental contamination with antimicrobial stewardship regulations and program implementation. The companion Currents in One Health by Parker et al, AJVR, April 2024, addresses the intensive research that justifies this One Health cycle of antimicrobial resistance transmission and emerging techniques that are dissecting the complex interactions at the One Health interface.
Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Animais Selvagens/microbiologia , Farmacorresistência Bacteriana MúltiplaRESUMO
BACKGROUND: Urine is routinely evaluated in dogs to assess health. Reference ranges for many urine properties are well established, but the scope of variation in these properties over time within healthy dogs is not well characterized. OBJECTIVES: Longitudinally characterize urine properties in healthy dogs over 3 months. ANIMALS: Fourteen healthy client-owned dogs. METHODS: In this prospective study, dogs were evaluated for health; then, mid-stream free-catch urine was collected from each dog at 12 timepoints over 3 months. Urine pH, urine specific gravity (USG), protein, cultures, and antimicrobial resistance profiles were assessed at each timepoint. RESULTS: Urine pH varied within and between dogs over time (Friedman's test: within P = .03; between P < .005). However, USG, protein, and bacterial diversity of urine were consistent within dogs over time, and only varied between dogs (Kruskal-Wallis: between all P < .005). Antimicrobial resistant isolates were identified in 12 out of 14 dogs with 34 of 48 of the isolates demonstrating resistance to amoxicillin. CONCLUSIONS AND CLINICAL IMPORTANCE: Urine pH should be assessed at multiple timepoints via pH meter before making clinical decisions. Mid-stream free-catch urine with high concentrations of bacteria (>105 CFU/mL) should not be considered the only indicator of urinary tract infection. Bacterial isolates from dogs in this study had widespread resistance to amoxicillin/oxacillin underscoring the need for antimicrobial stewardship.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Cães , Animais , Gravidade Específica , Antibacterianos/farmacologia , Estudos Prospectivos , Amoxicilina , Concentração de Íons de HidrogênioRESUMO
Antibiotic therapy is the standard of care for urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC). However, previous antibiotic therapy may impart a selective pressure that influences the population structure and pathogenic potential of infecting UPEC strains. Here, we conducted a 3-year study using whole-genome-sequencing analysis and retrospective medical record review to characterize how antibiotic exposure influenced the phenotypic antibiotic resistance, acquired resistome, virulome, and population structure of 88 UTI-causing E. coli strains from dogs. A majority of UTI-associated E. coli strains were from phylogroup B2 and clustered within sequence type 372. Previous antibiotic exposure was associated with a population shift toward UPEC from phylogroups other than the typical urovirulent phylogroup B2. The specific virulence profiles within the accessory virulome that were associated with antibiotic use were elicited by the effect of antibiotics on UPEC phylogenetic structure. Among phylogroup B2, antibiotic exposure increased the quantity of genes within the resistome and the odds of developing reduced susceptibility to at least one antibiotic. Non-B2 UPEC strains harbored a more diverse and greater resistome that conferred reduced susceptibility to multiple antibiotic classes following antibiotic exposure. Collectively, these data suggest that previous antibiotic exposure establishes an environment that provides a selective edge to non-B2 UPEC strains through their diverse and abundant antibiotic resistance genes, despite their lack of urovirulence genes. Our findings highlight the necessity for judicious use of antibiotics as we uncover another mechanism by which antibiotic exposure and resistance can influence the dynamics of bacterial infectious disease. IMPORTANCE Urinary tract infections (UTIs) are one of the most common infections of dogs and humans. While antibiotic therapy is the standard of care for UTIs and other infections, antibiotic exposure may influence the pathogenic profile of subsequent infections. We used whole-genome sequencing and retrospective medical record review to characterize the effect of systemic antibiotic therapy on the resistance, virulence, and population structure of 88 UTI-causing UPEC strains isolated from dogs. Our results indicate that antibiotic exposure alters the population structure of infecting UPEC strains, providing a selective edge for non-B2 phylogroups that harbor diverse and abundant resistance gene catalogues but fewer urovirulence genes. These findings highlight how antibiotic resistance can influence pathogen infection dynamics and have clinical implications for the judicious use of antibiotics for bacterial infections.
Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Animais , Cães , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Filogenia , Estudos Retrospectivos , Fatores de Virulência/genética , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/veterinária , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
Concern about zoonoses and wildlife has increased. Few studies described the role of wild mammals and environments in the epidemiology of Salmonella. Antimicrobial resistance is a growing problem associated with Salmonella that threatens global health, food security, the economy, and development in the 21st century. The aim of this study is to estimate the prevalence and identify antibiotic susceptibility profiles and serotypes of non-typhoidal Salmonella enterica recovered from non-human primate feces, feed offered, and surfaces in wildlife centers in Costa Rica. A total of 180 fecal samples, 133 environmental, and 43 feed samples from 10 wildlife centers were evaluated. We recovered Salmonella from 13.9% of feces samples, 11.3% of environmental, and 2.3% of feed samples. Non-susceptibility profiles included six isolates from feces (14.6%): four non-susceptible isolates (9.8%) to ciprofloxacin, one (2.4%) to nitrofurantoin, and one to both ciprofloxacin and nitrofurantoin (2.4%). Regarding the environmental samples, one profile was non-susceptible to ciprofloxacin (2.4%) and two to nitrofurantoin (4.8%). The serotypes identified included Typhimurium/I4,[5],12:i:-, S. Braenderup/Ohio, S. Newport, S. Anatum/Saintpaul, and S. Westhampton. The epidemiological surveillance of Salmonella and antimicrobial resistance can serve in the creation of strategies for the prevention of the disease and its dissemination throughout the One Health approach.
RESUMO
Aquatic ecosystems are currently facing a multitude of stressors from anthropogenic impacts, including climate change, pollution, and overfishing. Public aquariums positively contribute to ecosystems through conservation, education, and scientific advancement; but may also negatively detract from these systems through collection of animals from the wild and sourcing from commercial suppliers. Changes within the industry have occurred, although evidence-based assessments of 1) how aquariums collect and maintain their populations to determine sustainability of the environment they have harvested; and 2) the welfare of these harvested animals once within the aquariums are still needed. The objectives of this study were to assess the ecosystem health of locations aquariums frequently visit to collect fish from the wild, and then evaluate the wellbeing of fishes at aquariums after extended periods in captivity. Assessments included use of chemical, physical, and biological indicators at field sites, and use of a quantitative welfare assessment at aquariums for comparison to species reared through aquaculture. Anthropogenic pressures at field sites were observed, but no evidence of high degradation or compromised health of animals were found. Welfare assessments of aquarium exhibit tanks produced high-positive scores overall (> 70/84), demonstrating that both wild collected (avg. score 78.8) and aquaculture fishes (avg. score 74.5) were coping appropriately within their environments. Although findings indicated that fish can be taken from the wild at low-moderate rates without any deleterious impact on the environment and cope equally well in aquarium settings, alternatives such as aquaculture should be considered as a strategy to reduce pressure on known stressed aquatic environments or where significant numbers of fishes are being taken.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Pesqueiros , Peixes , AquiculturaRESUMO
Salmonella enterica serovar Agona is commonly detected in raw animal feed components during routine microbial monitoring of Australian commercial animal feed mills. We hypothesized that Salmonella-contaminated raw feed components originate at the rendering or oil seed crushing plant and are distributed to mills in different locations. Our objective was to investigate the source of Salmonella Agona contaminated raw feed components. Whole genome sequences of 37 Salmonella Agona isolates, 36 from raw feed components and 1 from finished feed, collected from 10 Australian feed mills located in 4 Australian states, were compared using core genome phylogenetic analysis. After DNA extraction and de novo draft assembly of the paired reads, the draft genomes were aligned using conserved signature indel phylogeny against a reference genome for Salmonella Agona, to identify single nucleotide polymorphisms in the core genome. Five distinct clades corresponding to the five different suppliers of Salmonella Agona-contaminated raw feed components were identified in the resulting phylogenetic tree. The results also provided evidence of cross-transference of Salmonella Agona between canola meal, meat meal, and finished feed within a mill. Core genome phylogenetic analysis facilitated tracing the source of Salmonella contamination in feed mills.
Assuntos
Salmonella enterica , Animais , Filogenia , Austrália , Salmonella/genética , Ração AnimalRESUMO
Environmental surfaces can serve as reservoirs for pathogens and antimicrobial-resistant (AMR) bacteria in healthcare settings. Although active surveillance programs are used in veterinary and human healthcare, unconventional settings like zoological facilities are often overlooked, even though antimicrobials are used to maintain the health of their animal collections. Here, we used electrostatic cloths to conduct active environmental surveillance over a 2-year period at two zoological institutions to determine contamination prevalence of human-only and mixed animal-human touch environments with AMR bacteria. We recovered Enterobacterales isolates that expressed quinolone resistance, an AmpC-like phenotype, and an extended-spectrum ß-lactamase phenotype from 144 (39%), 141 (38.2%), and 72 (19.5%) of the environmental samples, respectively. The zoological institutions, areas and exhibits within the zoological facility, and sampling surface type affected the odds of recovering AMR bacteria from the environment. Three carbapenemase-producing Enterobacter cloacae complex ST171 isolates recovered from one zoological facility harbored an IncH12 plasmid with a Tn4401b-KPC-4 transposon conferring multidrug resistance. One isolate maintained three tandem repeats of a Tn4401b-KPC-4 element on an IncHI2 plasmid, although this isolate was susceptible to the four carbapenem drugs tested. These three isolates and their IncH12 plasmids shared significant genomic similarity with two E. cloacae complex isolates recovered from canine patients at a regional veterinary hospital during year 2 of this study. Our results indicated that surface environments at zoological institutions can serve as reservoirs for AMR bacteria and their genes and have implications for animal and public health. IMPORTANCE Environmental surfaces can be a source of antimicrobial-resistant (AMR) bacteria that pose a risk to human and animal health. Zoological institutions are unique environments where exotic animals, staff, and visitors intermingle and antimicrobials are used to maintain animal health. However, zoological environments are often overlooked as reservoirs of AMR bacteria. Here, we show that zoological environments can serve as reservoirs of fluoroquinolone-resistant and extended-spectrum cephalosporin-resistant bacteria. In addition, we isolated three carbapenemase-producing Enterobacter cloacae complex strains carrying blaKPC-4, including one with a unique, tandem triplicate of the Tn4401b-KPC-4 element. Comparative whole genomics of these isolates with two E. cloacae complex isolates from patients at a regional veterinary hospital highlighted the possibility of local KPC-4 spread between animal environments. Our results suggest that environments at zoological institutions serve as reservoirs for AMR bacteria and pose a hypothetical One Health risk to the public, staff, and the wild animal populations in captivity.
Assuntos
Enterobacter cloacae , Infecções por Enterobacteriaceae , Humanos , Animais , Cães , Enterobacter cloacae/genética , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , beta-Lactamases/genética , Testes de Sensibilidade MicrobianaRESUMO
As safe agents of last resort, carbapenems are reserved for the treatment of infections caused by multidrug-resistant organisms. The impact of ß-lactam antibiotics, cefotaxime, and meropenem on the frequency and diversity of carbapenemase-producing organisms recovered from environmental samples has not been fully established. Therefore, this methodological study aimed at determining ß-lactam drugs used in selective enrichment and their impact on the recovery of carbapenemase-producing Enterobacterales (CPE) from untreated wastewater. We used a longitudinal study design where 1L wastewater samples were collected weekly from wastewater treatment plant (WWTP) influent and quarterly from contributing sanitary sewers in Columbus, Ohio USA with 52 total samples collected. Aliquots of 500 mL were passed through membrane filters of decreasing pore sizes to enable all the water to pass through and capture bacteria. For each sample, the resulting filters were placed into two modified MacConkey (MAC) broths, one supplemented with 0.5 µg/mL of meropenem and 70 µg/mL of ZnSO4 and the other supplemented with 2 µg/mL cefotaxime. The inoculated broth was then incubated at 37° C overnight, after which they were streaked onto two types of correspondingly-modified MAC agar plates supplemented with 0.5 µg/mL and 1.0 µg/mL of meropenem and 70 µg/mL of ZnSO4 and incubated at 37°C overnight. The isolates were identified based on morphological and biochemical characteristics. Then, up to four distinct colonies of each isolate's pure culture per sample were tested for carbapenemase production using the Carba-NP test. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) MALDI-TOF MS was used to identify carbapenemase-producing organisms. In total 391 Carba-NP positive isolates were recovered from the 52 wastewater samples: 305 (78%) isolates had blaKPC, 73 (19%) carried blaNDM, and 14 (4%) harbored both blaKPC and blaNDM resistance genes. CPE genes of both blaKPC and blaNDM were recovered in both types of modified MAC broths, with 84 (21%) having a blaKPC gene, 22 (6%) carrying blaNDM and 9 (2%) harbored both a blaKPC and blaNDM of isolates recovered from MAC medium incorporated with 0.5ug/mL meropenem and 70ug/mL ZnSO4. The most prevalent isolates were Klebsiella pneumoniae, Escherichia coli, and Citrobacter spp.
Assuntos
Cefotaxima , Águas Residuárias , Meropeném , Estudos Longitudinais , Ohio , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , AntibacterianosRESUMO
Objective: To identify important risk factors for carbapenem-resistant Enterobacterales (CRE) infections among hospitalized patients. Design: We utilized a case-case-control design that compared patients with CRE infections to patients with carbapenem-susceptible Enterobacterales (CSE) infections and randomly selected controls during the period from January 2011 through December 2016. Setting: The study population was selected from patients at a large metropolitan tertiary-care and instructional medical center. Patients: Cases of CRE were defined as initial admission of adults diagnosed with a bacterial infection of an Enterobacterales species resistant clinically or through sensitivity testing to carbapenems 48 hours or more after admission. Cases of CSE were selected from the same patient population as the CRE cases within a 30-day window for admission, with diagnostic pathogens identified as susceptible to carbapenems. Controls were defined as adult patients admitted to any service within a 30-day window from a CRE case for >48 hours who did not meet either of the above case definitions during that admission. Results: Antibiotic exposure within 90 days prior to admission and length of hospital stay were both associated with increased odds of CRE and CSE infections compared to controls. Patients with CRE infections had >18 times greater odds of prior antibiotic exposure compared to patients with CSE infections. Conclusions: Antibiotic exposure and increased length of hospital stay may result in increased patient risk of developing an infection resistant to carbapenems and other ß-lactams.
RESUMO
Surface waters, especially those receiving wastewater flows, can disseminate antimicrobial resistant bacteria (ARB), antimicrobial resistance genes (ARG), and antibiotics. In the Scioto River of central Ohio, United States, we evaluated fishes as potential sentinels of ARB and antimicrobial contamination and investigated the influence of antimicrobial exposure on the fish intestinal resistome. Seventy-seven fish were collected from river reaches receiving inputs from two wastewater treatment plants that serve the greater Columbus Metropolitan Area. Fish were screened for the presence of cephalosporin-resistant (CeRO) and carbapenem-resistant (CRO) organisms, epidemic carbapenemase genes, and antibiotic drugs and metabolites using culture methods, droplet digital PCR, and ultra-high performance liquid chromatography tandem mass spectroscopy (UHPLC-MS/MS). Nearly 21% of fish harbored a CeRO in their resistome, with 19.4% exhibiting bacteria expressing an AmpC genotype encoded by blaCMY, and 7.7% with bacteria expressing an extended-spectrum ß-lactamase phenotype encoded by blaCTX-M. blaKPC and blaNDM were present in 87.7% (57/65) and 80.4% (37/46) of the intestinal samples at an average abundance of 104 copies. Three antibiotics-lincomycin (19.5%), azithromycin (31.2%) and sulfamethoxazole (3.9%)-were found in hepatic samples at average concentrations between 25-31 ng/g. Fish harboring blaCTX-M and those exposed to azithromycin were at greater odds of being downstream of a wastewater treatment plant. Fish that bioconcentrated antibiotics in their liver were not at greater odds of harboring CeRO, CRO, or epidemic carbapenemase gene copies in their resistome. Our findings confirm that fishes can be effective bioindicators of surface waters contaminated with ARB, ARG, and antibiotics. Moreover, our findings highlight the varying importance of different mechanisms that facilitate establishment of ARB in aquatic ecosystems.
Assuntos
Antibacterianos , Anti-Infecciosos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Azitromicina/farmacologia , Bactérias/genética , Proteínas de Bactérias , Cefalosporinas/farmacologia , Ecossistema , Peixes/genética , Espectrometria de Massas em Tandem , Águas Residuárias/microbiologia , Água/farmacologia , beta-Lactamases/genética , beta-Lactamases/farmacologiaRESUMO
Natural waterways near urban areas are heavily impacted by anthropogenic activities, including their microbial communities. A contaminant of growing public health concern in rivers is antibiotic resistant genes (ARGs), which can spread between neighboring bacteria and increase the potential for transmission of AR bacteria to animals and humans. To identify the matrices of most concern for AR, we compared ARG burdens and microbial community structures between sample types from the Scioto River Watershed, Ohio, the United States, from 2017 to 2018. Five environmental matrices (water, sediment, periphyton, detritus, and fish gut) were collected from 26 river sites. Due to our focus on clinically relevant ARGs, three carbapenem resistance genes (blaKPC, blaNDM, and blaOXA-48) were quantified via DropletDigital™ PCR. At a subset of nine urbanized sites, we conducted16S rRNA gene sequencing and functional gene predictions. Carbapenem resistance genes were quantified from all matrices, with blaKPC being the most detected (88 % of samples), followed by blaNDM (64 %) and blaOXA-48 (23 %). Fish gut samples showed higher concentrations of blaKPC and blaNDM than any other matrix, indicating potential ARG bioaccumulation, and risk of broader dissemination through aquatic and nearshore food webs. Periphyton had higher concentrations of blaNDM than water, sediment, or detritus. Microbial community analysis identified differences by sample type in community diversity and structure. Sediment samples had the most diverse microbial communities, and detritus, the least. Spearman correlations did not reveal significant relationships between the concentrations of the monitored ARGs and microbial community diversity. However, several differentially abundant taxa and microbial functions were identified by sample type that is definitive of these matrices' roles in the river ecosystem and habitat type. In summary, the fish gut and periphyton are a concern as AR reservoirs due to their relatively high concentration of carbapenem resistance genes, diverse microbial communities, and natural functions that promote AR.
Assuntos
Microbiota , Perifíton , Animais , Antibacterianos/farmacologia , Carbapenêmicos , Resistência Microbiana a Medicamentos/genética , Peixes/genética , Genes Bacterianos , Humanos , ÁguaRESUMO
Biofilm formation enhances bacteria's ability to colonize unique niches while protecting themselves from environmental stressors. Escherichia coli that colonize the urinary tract can protect themselves from the harsh bladder environment by forming biofilms. These biofilms promote persistence that can lead to chronic and recurrent urinary tract infections (UTI). While biofilm formation is frequently studied among urinary E. coli, its association with other pathogenic mechanisms and adaptations in certain host populations remains poorly understood. Here we utilized whole genome sequencing and retrospective medical record analysis to investigate associations between the population structure, phenotypic resistance, resistome, virulome, and patient demographic and clinical findings of 104 unique urinary E. coli and their capacity to form biofilms. We show that population structure including multilocus sequence typing and Clermont phylogrouping had no association with biofilm capacity. Among clinical factors, exposure to multiple antibiotics within that past 30 days and a clinical history of recurrent UTIs were positively associated with biofilm formation. In contrast, phenotypic antimicrobial reduced susceptibility and corresponding acquired resistance genes were negatively associated with biofilm formation. While biofilm formation was associated with increased virulence genes within the cumulative virulome, individual virulence genes did not influence biofilm capacity. We identified unique virulotypes among different strata of biofilm formation and associated the presence of the tosA/R-ibeA gene combination with moderate to strong biofilm formation. Our findings suggest that E. coli causing UTI in dogs utilize a heterogenous mixture of virulence genes to reach a biofilm phenotype, some of which may promote robust biofilm capacity. Antimicrobial use may select for two populations, non-biofilm formers that maintain an arsenal of antimicrobial resistance genes to nullify treatment and a second that forms durable biofilms to avoid therapeutic insults.
Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Cães , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Estudos Retrospectivos , Infecções Urinárias/tratamento farmacológicoRESUMO
Wildlife play a role in the acquisition, maintenance, and dissemination of antimicrobial resistance (AMR). This is especially true at the human-domestic animal-wildlife interface, like urbanized areas, where interactions occur that can promote the cross-over of AMR bacteria and genes. We conducted a 2-year fecal surveillance (n = 783) of a white-tailed deer (WTD) herd from an urban park system in Ohio to identify and characterize cephalosporin-resistant and carbapenemase-producing bacteria using selective enrichment. Using generalized linear mixed models we found that older (OR = 2.3, P < 0.001), male (OR = 1.8, P = 0.001) deer from urbanized habitats (OR = 1.4, P = 0.001) were more likely to harbor extended-spectrum cephalosporin-resistant Enterobacterales. In addition, we isolated two carbapenemase-producing Enterobacterales (CPE), a Klebsiella quasipneumoniae harboring blaKPC-2 and an Escherichia coli harboring blaNDM-5, from two deer from urban habitats. The genetic landscape of the plasmid carrying blaKPC-2 was unique, not clustering with other reported plasmids encoding KPC-2, and only sharing 78% of its sequence with its nearest match. While the plasmid carrying blaNDM-5 shared sequence similarity with other reported plasmids encoding NDM-5, the intact IS26 mobile genetic elements surrounding multiple drug resistant regions, including the blaNDM-5, has been reported infrequently. Both carbapenemase genes were successfully conjugated to a J53 recipient conferring a carbapenem-resistant phenotype. Our findings highlight that urban environments play a significant role on the transmission of AMR bacteria and genes to wildlife and suggest WTD may play a role in the dissemination of clinically and epidemiologically relevant antimicrobial resistant bacteria. IMPORTANCE The role of wildlife in the spread of antimicrobial resistance is not fully characterized. Some wildlife, including white-tailed deer (WTD), can thrive in suburban and urban environments. This may result in the exchange of antimicrobial resistant bacteria and resistance genes between humans and wildlife, and lead to their spread in the environment. We found that WTD living in an urban park system carried antimicrobial resistant bacteria that were important to human health and resistant to antibiotics used to treat serious bacterial infections. This included two deer that carried bacteria resistant to carbapenem antibiotics which are critically important for treatment of life-threatening infections. These two bacteria had the ability to transfer their AMR resistance genes to other bacteria, making them a threat to public health. Our results suggest that WTD may contribute to the spread of antimicrobial resistant bacteria in the environment.
Assuntos
Cefalosporinase , Cervos , Farmacorresistência Bacteriana , Gammaproteobacteria/isolamento & purificação , Animais , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinase/genética , Cefalosporinas/farmacologia , Cervos/microbiologia , Gammaproteobacteria/efeitos dos fármacos , Humanos , Masculino , Testes de Sensibilidade Microbiana , PlasmídeosRESUMO
Antibacterial resistance continues its devastation of available therapies. Novel bacterial topoisomerase inhibitors (NBTIs) offer one solution to this critical issue. Two series of amine NBTIs bearing tricyclic DNA-binding moieties as well as amide NBTIs with a bicyclic DNA-binding moiety were synthesized and evaluated against methicillin-resistant Staphylococcus aureus (MRSA). Additionally, these compounds and a series of bicyclic amine analogues displayed high activity against susceptible and drug-resistant Neisseria gonorrhoeae, expanding the spectrum of these dioxane-linked NBTIs.
RESUMO
ABSTRACT: Studies of red swamp crayfish (Procambarus clarkii) outside of the United States confirm the presence of a variety of zoonotic pathogens, but it is unknown whether these same pathogens occur in P. clarkii in the United States. The U.S. commercial crayfish industry generates $200 million yearly, underscoring the need to evaluate this consumer commodity. The study objectives were to evaluate specific zoonotic pathogens present on P. clarkii from Alabama and Louisiana, states in the southeastern United States, and to determine the effectiveness of traditional food preparation methods to reduce pathogens. Experiment A evaluated the presence of Escherichia coli, Salmonella, Staphylococcus aureus, and Vibrio spp. in crayfish and environmental samples over a 2-month collection period (May to June 2021). Crayfish sampling consisted of swabbing the cephalothorax region; 15 samples were tested for E. coli, Salmonella, and S. aureus, and an additional 15 samples for Vibrio spp. Additionally, crayfish shipping materials were sampled. In experiment B, 92 crayfish were evaluated for Paragonimus kellicotti. Experiment C compared live and boiled crayfish for the presence of Vibrio spp. In experiments A and B, all 60 (100%) crayfish samples and 13 (81.25%) of 16 environmental samples showed growth characteristic of Vibrio spp. Three (5%) of 60 samples showed E. coli growth, with no statistical difference (P = 0.5536) between farms. P. kellicotti, Salmonella, and S. aureus were not recovered from any samples. In experiment C, all 10 (100%) of the live preboiled crayfish samples showed characteristic growth, whereas 1 (10%) of 10 samples of crayfish boiled in unseasoned water showed Vibrio growth (P < 0.0001). These results confirm that Vibrio spp. and E. coli may be present on U.S. commercial crayfish and that care should be taken when handling any materials that come into contact with live crayfish because they can potentially be contaminated.
Assuntos
Furunculose , Paragonimus , Vibrio , Animais , Astacoidea/microbiologia , Escherichia coli , Staphylococcus aureusRESUMO
Stressful conditions in animal production facilities may exacerbate the fecal shedding and foodborne transmission of non-typhoidal Salmonella enterica subsp. enterica. Dairy cows are reservoirs of this zoonotic microorganism, and its prevalence has roughly doubled in the past decade on dairy farms in United States. Dairy cows are commonly overstocked at the feed bunk, and stressors placed on the animal prior to parturition may exacerbate Salmonella shedding. However, no studies have evaluated the impact of overstocking and metabolic stress on fecal concentrations of the pathogen. Therefore, we conducted a field trial with 120 multiparous dairy cows randomized into one of four treatment groups with different stocking densities at the feed bunk during the periparturient period as follows: US, understocked from -60 to -1 DRC; OS, overstocked from -60 to -1 DRC; USOS, understocked from -60 to -26 DRC/overstocked from -25 to -1 DRC; and OSUS, overstocked from -60 to -26 DRC/ understocked from -25 to -1 DRC. Fecal and blood samples were collected at four time points relative to calving. qPCR assays were used to quantify Salmonella invA gene and total bacterial community from fecal samples, and a subset of isolates recovered from fecal bacterial culture were characterized using pulsed field gel electrophoresis and serotyping. Serum non-esterified fatty acids (NEFA) were measured as a metabolic stress indicator using an immunoassay. Multivariable analyses were performed to test if changes in Salmonella concentrations were associated with stocking density, energy balance, or days relative to calving. From fecal isolates, three Salmonella serovars were identified, S. Cerro; Kentucky; Meleagridis. Concentrations of Salmonella increased as cows approached calving. Higher stocking densities at the feed bunk did not impact total bacterial community or NEFA; however, cows in the overstocked groups had higher Salmonella fecal concentrations. Further, cows with higher NEFA concentrations after calving had a higher likelihood of detection of Salmonella. Future farm interventions should aim to reduce environmental and metabolic stress during the periparturient period to decrease the dissemination of Salmonella to cattle, the environment, and humans.
RESUMO
Salmonella contamination of livestock feed is a serious veterinary and public health issue. In this study we used a systematic review to assess the prevalence and characterization of Salmonella isolates detected in raw feed components, feed milling equipment and finished feed from 97 studies published from 1955 to 2020 across seven global regions. Eighty-five studies were included in a meta-analyses to estimate the combined prevalence of Salmonella detection and to compare the risk of contamination associated with different sample types. We found the overall combined prevalence estimate of Salmonella detection was 0.14 with a prevalence of 0.18 in raw feed components, 0.09 in finished feed and 0.08 in feed milling equipment. Animal based raw feed components were 3.9 times more likely to be contaminated with Salmonella than plant based raw feed components. Differences between studies accounted for 99 % of the variance in the prevalence estimate for all sample types and there was no effect of region on the prevalence estimates. The combined prevalence of Salmonella detection in raw feed components decreased from 0.25 in 1955 to 0.11 in 2019. The proportion of Salmonella isolates that were resistant to antimicrobials was largest for amikacin (0.20), tetracycline (0.18) streptomycin (0.17), cefotaxime (0.14) and sulfisoxazole (0.11). The prevalence of Salmonella contamination of animal feed varies widely between individual studies and is an ongoing challenge for the commercial feed industry. Control relies on the vigilant monitoring and control of Salmonella in each individual mill.