Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 62(16): 7489-7505, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31306011

RESUMO

A major challenge for new antibiotic discovery is predicting the physicochemical properties that enable small molecules to permeate Gram-negative bacterial membranes. We have applied physicochemical lessons from previous work to redesign and improve the antibacterial potency of pyridopyrimidine inhibitors of biotin carboxylase (BC) by up to 64-fold and 16-fold against Escherichia coli and Pseudomonas aeruginosa, respectively. Antibacterial and enzyme potency assessments in the presence of an outer membrane-permeabilizing agent or in efflux-compromised strains indicate that penetration and efflux properties of many redesigned BC inhibitors could be improved to various extents. Spontaneous resistance to the improved pyridopyrimidine inhibitors in P. aeruginosa occurs at very low frequencies between 10-8 and 10-9. However, resistant isolates had alarmingly high minimum inhibitory concentration shifts (16- to >128-fold) compared to the parent strain. Whole-genome sequencing of resistant isolates revealed that either BC target mutations or efflux pump overexpression can lead to the development of high-level resistance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Fenômenos Químicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Modelos Químicos , Estrutura Molecular , Mutação , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética
2.
J Pharm Biomed Anal ; 111: 126-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25880243

RESUMO

Amino carbamate adduct formation from the amino group of an aminoglycoside and carbon dioxide has been postulated as a mechanism for reducing nephrotoxicity in the aminoglycoside class compounds. In this study, sisomicin was used as a model compound for amino carbamate analysis. A high pH based reversed-phase high performance liquid chromatography (RP-HPLC) method is used to separate the amino carbamate from sisomicin. The carbamate is stable as the breakdown is inhibited at high pH and any reactive carbon dioxide is removed as the carbonate. The amino carbamate was quantified and the molar fraction of amine as the carbamate of sisomicin was obtained from the HPLC peak areas. The equilibrium constant of carbamate formation, Kc, was determined to be 3.3 × 10(-6) and it was used to predict the fraction of carbamate over the pH range in a typical biological systems. Based on these results, the fraction of amino carbamate at physiological pH values is less than 13%, and the postulated mechanism for nephrotoxicity protection is not valid. The same methodology is applicable for other aminoglycosides.


Assuntos
Carbamatos/química , Sisomicina/química , Aminoglicosídeos/química , Dióxido de Carbono/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Concentração de Íons de Hidrogênio
3.
J Pharm Biomed Anal ; 66: 75-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22459505

RESUMO

A reversed-phase high performance liquid chromatographic (RP-HPLC) method has been developed for the aminoglycoside (AG) plazomicin (ACHN-490). This method employed a high pH mobile phase (pH>11) with a gradient of 0.25 M ammonium hydroxide in water and acetonitrile, an XBridge C(18) column and UV detection at 210 nm. Although the molar UV absorption of plazomicin is weak, the high pH conditions of this method allow for higher loadings, which compensates for the inherent low UV sensitivity. Under these high pH conditions, impurities and degradants were base line separated from plazomicin. The mobile phases used for this method allowed for on-line mass detection for the impurities and degradants. The RP-HPLC method has been validated in terms of specificity, linearity and range, accuracy, and precision. The analytical method met specificity requirements of a homogenous peak with no interferences from the blank or from the known impurities in plazomicin. The linearity of the method for the plazomicin impurity determination was excellent, with a coefficient of determination (r(2)) of 0.9993, over the freebase (FB) concentration range of 0.0025-3.0 mg/mL. The method is capable of detecting impurities down to 0.1% of the peak area of plazomicin. A single point standard at a concentration of 1.0 mg/mL FB was validated over the range of 50-150% for quantitation of the freebase content (the assay) in bulk drug substance. The mean recoveries of FB are in the range 98.6-102.0% with a mean RSD (relative standard deviation) <1.0%. The study also examined the method precision for purity, impurities and the assay with two instruments on two different days. The method showed adequate accuracy and precision for the intended use. This high pH method was successfully used to determine the impurity and measure the drug content in the final plazomicin drug substance. In addition, the method with an on-line mass spectrometry detector has been used to characterize the structures of the impurities in plazomicin.


Assuntos
Antibacterianos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Sisomicina/análogos & derivados , Antibacterianos/química , Contaminação de Medicamentos , Concentração de Íons de Hidrogênio , Limite de Detecção , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sisomicina/análise , Sisomicina/química
4.
Antimicrob Agents Chemother ; 54(11): 4636-42, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805391

RESUMO

ACHN-490 is a neoglycoside, or "next-generation" aminoglycoside (AG), that has been identified as a potentially useful agent to combat drug-resistant bacteria emerging in hospitals and health care facilities around the world. A focused medicinal chemistry campaign produced a collection of over 400 sisomicin analogs from which ACHN-490 was selected. We tested ACHN-490 against two panels of Gram-negative and Gram-positive pathogens, many of which harbored AG resistance mechanisms. Unlike legacy AGs, ACHN-490 was active against strains expressing known AG-modifying enzymes, including the three most common such enzymes found in Enterobacteriaceae. ACHN-490 inhibited the growth of AG-resistant Enterobacteriaceae (MIC(90), ≤4 µg/ml), with the exception of Proteus mirabilis and indole-positive Proteae (MIC(90), 8 µg/ml and 16 µg/ml, respectively). ACHN-490 was more active alone in vitro against Pseudomonas aeruginosa and Acinetobacter baumannii isolates with AG-modifying enzymes than against those with altered permeability/efflux. The MIC(90) of ACHN-490 against AG-resistant staphylococci was 2 µg/ml. Due to its promising in vitro and in vivo profiles, ACHN-490 has been advanced into clinical development as a new antibacterial agent.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Sisomicina/análogos & derivados , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Enterobacteriaceae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteus mirabilis/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Sisomicina/síntese química , Sisomicina/química , Sisomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA