Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289801

RESUMO

Red pitaya fruit has become a source of natural colorant, because it is rich in betalains, a pigment that imparts a red-purple color that interests the food and cosmetics industries. This fruit also possesses high nutritional value, with a range of bioactive compounds known to confer potential health benefits and prevent chronic diseases, such as diabetes, which makes it useful for use as pharmaceutical agents and dietary supplements. In order to improve its technological and biological effects, a concentration will be required. Thus, the microfiltration, followed by vacuum concentration, can be an interesting strategy for this purpose. This study aimed to explore tangential microfiltration to produce microfiltered material, which is an important step to obtain the microfiltered red-purple pitaya concentrate. Therefore, physicochemical and chemical characterization (including 1H NMR analysis) and biological properties (toxicity and diabetes) of this concentrate were assessed, using adult zebrafish as a model. The results show that microfiltration was carried out efficiently, with an average consumption of 95.75 ± 3.13 and 74.12 ± 3.58 kW h m-3, varying according to the material used ("unpeeled pitaya pulp" or "pitaya pulp with peel," respectively). The in vivo tests indicated non-toxicity and hypoglycemic effect of the concentrate, since the blood glucose levels were significantly lower in the zebrafish groups treated with this concentrate in comparison with that of control group. Thus, this study suggests the potential of microfiltered red-purple pitaya concentrate as a promising multifunctional food-derived colorant, exhibiting beneficial biological effects far beyond its attractive color. PRACTICAL APPLICATION: Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose has attracted attention as a potential source of natural colorants because of its red-purple skin and flesh color. In addition, this fruit has a range of bioactive compounds, which make it a valuable resource for providing potential health benefits and preventing chronic diseases such as diabetes. In this paper, the microfiltered red-purple pitaya concentrate showed beneficial biological effects far beyond its attractive color. Thus, this product can be considered a promising multifunctional food-derived colorant to use in the food, pharmaceutical, or cosmetics industries.

2.
Chem Biodivers ; 21(8): e202400935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38818650

RESUMO

The study focuses on the anxiolytic potential of chalcone (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (CHALCNM) in adult zebrafish. Successfully synthesized in 58 % yield, CHALCNM demonstrated no toxicity after 96 h of exposure. In behavioral tests, CHALCNM (40 mg/kg) reduced locomotor activity and promoted less anxious behavior in zebrafish, confirmed by increased permanence in the light zone of the aquarium. Flumazenil reversed its anxiolytic effect, indicating interaction with GABAA receptors. Furthermore, CHALCNM (4 and 20 mg/kg) preserved zebrafish memory in inhibitory avoidance tests. Virtual screening and ADMET profile studies suggest high oral bioavailability, access to the CNS, favored by low topological polarity (TPSA≤75 Å2) and low incidence of hepatotoxicity, standing out as a promising pharmacological agent against the GABAergic system. In molecular coupling, CHALCNM demonstrated superior affinity to diazepam for the GABAA receptor. These results reinforce the therapeutic potential of CHALCNM in the treatment of anxiety, highlighting its possible future clinical application.


Assuntos
Ansiolíticos , Comportamento Animal , Chalcona , Peixe-Zebra , Animais , Comportamento Animal/efeitos dos fármacos , Chalcona/química , Chalcona/farmacologia , Chalcona/análogos & derivados , Ansiolíticos/farmacologia , Ansiolíticos/química , Ansiolíticos/síntese química , Receptores de GABA-A/metabolismo , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Estrutura Molecular , Simulação de Acoplamento Molecular , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Locomoção/efeitos dos fármacos , Relação Estrutura-Atividade
3.
Chem Biodivers ; 21(8): e202400786, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777789

RESUMO

This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40 mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50>40 mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5 % was reduced by the dose of 40 mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.


Assuntos
Analgésicos , Simulação de Acoplamento Molecular , Peixe-Zebra , Animais , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Tropanos/farmacologia , Tropanos/isolamento & purificação , Tropanos/química , Edema/tratamento farmacológico , Edema/induzido quimicamente , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 1/metabolismo , Bignoniaceae/química , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular
4.
Chem Biodivers ; 21(4): e202400063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329295

RESUMO

The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.


Assuntos
Ibuprofeno , Peixe-Zebra , Animais , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Canais Iônicos
5.
Chem Biodivers ; 21(3): e202301807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38284478

RESUMO

The Piper genus, known for its pharmacological potential, comprises 2,263 species primarily found in tropical regions. Despite recent advancements in pain therapies, the demand for more effective and well-tolerated analgesics and anti-inflammatories, particularly for chronic pain, remains. This study assessed the effects of essential oils from Piper caldense, Piper mosenii, and Piper mikanianum on nociceptive behavior induced by formalin and capsaicin, as well as their anti-inflammatory impact induced by carrageenan, using adult zebrafish models. Results indicated non-toxic essential oils with antinociceptive properties in both neurogenic and inflammatory phases of formalin-induced nociception through interaction with the TRPA1 receptor. Additionally, P. mosenii essential oil also blocked the nociceptive effect of capsaicin, a TRPV1 receptor agonist. Furthermore, essential oils from P. caldense and P. mikanianum exhibited significant anti-inflammatory effects by reducing carrageenan-induced abdominal edema. These findings highlight the pharmacological potential of Piper's essential oils as antinociceptive and anti-inflammatory agents.


Assuntos
Óleos Voláteis , Piper , Animais , Carragenina/efeitos adversos , Peixe-Zebra , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Capsaicina , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Formaldeído/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico
6.
Fundam Clin Pharmacol ; 38(2): 290-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37845792

RESUMO

BACKGROUND: Anxiety disorders represent the complex interaction between biological, psychological, temperamental, and environmental factors; drugs available to treat anxiety such as benzodiazepines (BZDs) are associated with several unwanted side effects. Although there are useful treatments, there is still a need for more effective anxiolytics with better safety profiles than BZDs. Chalcones or 1,3-diphenyl-2-proper-1-ones can be an alternative since this class of compounds has shown therapeutic potential mainly due to interactions with GABAA receptors and serotonergic system. OBJECTIVES: This study evaluated the anxiolytic potential of chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (C2OHPDA) in adult zebrafish (Danio rerio) (ZFa). METHODS: Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 µL) with the chalcone (4, 20, and 40 mg/kg) and with the vehicle (DMSO 3%; 20 µL), being submitted to the tests of locomotor activity and 96-h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1 , 5-HTR2A/2C , and 5-HTR3A/3B receptors. It was investigated the prediction of the chalcone's position and preferential orientation concerning its receptor, as well as the pharmacokinetic parameters (ADMET) involved in the process after administration. RESULTS: As a result, C2OHPDA was not toxic and reduced the locomotor activity of ZFa. Furthermore, chalcone demonstrated an anxiolytic effect on the central nervous system (CNS), mediated by the serotonergic system, with action on 5-HT2A and 5-HTR3A/3B receptors. The interaction of C2OHPDA with 5-HT2A R and 5-HT3A receptors was confirmed by molecular docking study, the affinity energy observed was -8.7 and -9.1 kcal/mol, respectively. CONCLUSION: Thus, this study adds new evidence and highlights that chalcone can potentially be used to develop compounds with anxiolytic properties.


Assuntos
Ansiolíticos , Chalcona , Chalconas , Animais , Ansiolíticos/farmacologia , Peixe-Zebra , Simulação de Acoplamento Molecular , Serotonina , Benzodiazepinas , Receptores de GABA-A
7.
Neurochem Int ; 155: 105303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183661

RESUMO

Anxiety is a mental disorder that affects 25% of patients with epilepsy, and treatments for anxiety and seizures involve the use of benzodiazepines, a class of drugs that have many adverse effects such as decreased motor coordination, drowsiness, and sedation. Thus, new types of drugs with minimal side effects are of immediate requirement. Chalcones comprise a class of compounds with important therapeutic potential and have recently been investigated for their potential as anxiolytic and anticonvulsant agents. Therefore, this study aimed to evaluate the anxiolytic and anticonvulsant effects of the synthetic chalcone (E)-3-(furan-2-yl)-1-(2hydroxy-3,4,6-trimethoxyphenyl)prop-2-en-1-one (FURCHAL) using adult zebrafish as an animal model. Anxiolytic potential was assessed using the light/dark test and the anticonvulsant effect in 3-stage pentylenetetrazol (PTZ)-induced seizure tests. The mechanisms of the anxiolytic effect were analyzed using γ-aminobutyric acid (GABA) and the serotoninergic system. The anxiolytic effect of FURCHAL was verified by a reduction in fish locomotion, similar to diazepam (DZP), which may involve the GABAA receptor, as there was no reversal in the anxiolytic behavior of animals treated with FURCHAL by serotonergic antagonists. In addition, pretreatment with flumazenil blocked the anticonvulsant effect of FURCHAL and DZP at all three stages, indicating that FURCHAL also has anticonvulsant effects and that the presence of the α,ß unsaturated aromatic system and heterocyclic moiety in FURCHAL provided greater affinity for the GABAA receptors. Molecular docking revealed that the interactions involved in the formation of the protein-binding complex FURCHAL-GABAA are formed by three H-bonds involving the oxygen atoms of FURCHAL, and notably, complexes operated in the same region of the DZP site. Thus, this study adds new evidence and highlights that FURCHAL can potentially be used to develop compounds with anxiolytic and anticonvulsant properties.


Assuntos
Ansiolíticos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Furanos , Humanos , Simulação de Acoplamento Molecular , Receptores de GABA-A , Peixe-Zebra , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA