RESUMO
One of the latest ecological concepts is the occurrence of a biased rhizosphere of microorganisms recruited mostly through interactions among various components of the rhizosphere, including plant roots and the bulk soil microbiome. We compared the diverse attributes of the core microbiome of wheat rhizosphere communities with wheat (W) and legume (L) forecrops determined by three different methods in this study (membership, composition, and functionality). The conclusions of the three methods of microbiome core definition suggest the presence of generalists, i.e., some representative microorganisms from Proteobacteria, Actinobacteria, Hypomicrobiaceae, Bradyrhizobiaceae, Sphingomonas sp., in the wheat rhizomicrobiome. The relative abundance of the core microbiome accounted for 0.1976% (W) and 0.334% (L)-membership method and 6.425% (W) and 4.253% (L)-composition method. Additionally, bacteria of the specialist group, such as Rhodoplanes sp., are functionally important in the rhizomicrobiome core. This small community is strongly connected with other microbes and is essential for maintenance of the sustainability of certain metabolic pathways.
RESUMO
Liquid chromatography-tandem mass spectrometry (LC-MS/MS), colorimetry, and bioassays were employed for the evaluation of the ability of endophytic bacterial strains to synthesize indole-related compounds (IRCs) and in particular indole-3-acetic acid (IAA). A total of 54 endophytic strains belonging to seven bacterial genera isolated from tissues of common and spelt wheat cultivars were studied. The endophytic bacteria isolated from different tissues of the tested wheat types were capable of IRCs production, including IAA, which constituted from 1.75% to 52.68% of all IRCs, in in vitro conditions via the tryptophan dependent pathway. The selected post-culture medium was also examined using a plant bioassay. Substantial growth of wheat coleoptile segments treated with the bacterial post-culture medium was observed in several cases. Our data suggest that the studied endophytic bacteria produce auxin-type compounds to support plant development. Summarizing, our approach to use three complementary methods for estimation of IRCs in different endophytic strains provides a comprehensive picture of their effect on wheat growth.
Assuntos
Colorimetria/métodos , Endófitos/metabolismo , Ácidos Indolacéticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Triticum/microbiologia , Bactérias/metabolismo , Bioensaio , Cromatografia Líquida , Endófitos/química , Endófitos/isolamento & purificação , Ácidos Indolacéticos/análise , Indóis/metabolismo , PolôniaRESUMO
Endophytes are associated with host plants throughout their life history from seed germination to fruit development. One of the most important plant organs colonized by endophytic microbiota is the seed. The aim of this study was to determine the structure of the seed core microbiome inhabiting the endosperms and embryos of eight wheat cultivars with the use of a culture-independent technique. The seeds of Triticum aestivum L. cv. Hondia, Wilejka, STH, Opcja, Tybalt, Euforia and Triticum spelta L. cv. Rokosz and Schwabencorn (producer: Plant Breeding Strzelce Sp. z o.o. Group IHAR) were studied. Rokosz and Hondia were cultured in vitro and in vivo to identify obligatory bacterial endophytes. A restrictive analysis of reads originating from the in vitro plants has demonstrated that the bacterial genera Paenibacillus and Propionibacterium inhabiting Rokosz and Hondia plants have a status of obligatory microorganisms. Greater biodiversity of seed-borne endophytes was found in the seed endosperms than in the embryos. The multiple comparison analysis of the OTU abundance indicated that the seed part significantly influenced the relative abundance. The seed-born microbiome is not statistically significantly dependent on the wheat cultivars; however, it cannot be claimed that every wheat seed is the same.
Assuntos
Endófitos/genética , Sementes/microbiologia , Triticum/microbiologia , Biodiversidade , Endófitos/metabolismo , Microbiota/genética , RNA Ribossômico 16S/genética , Sementes/genética , Triticum/genéticaRESUMO
The main goal of the study was to determine the structure of endophytic bacteria inhabiting different parts (endosperm, germ, roots, coleoptiles, and leaves) of two wheat species, Triticum aestivum L. (cv. 'Hondia') and Triticum spelta L. (cv. 'Rokosz'), in order to provide new knowledge about the stability and/or changeability of the core microbiome in different plant organs. The endophytic core microbiome is associated with plants throughout their whole life cycle; however, plant organs can determine the actual endophytic community. Therefore, next generation sequencing with MiSeq Illumina technology was applied to identify the endophytic microbiome of T. aestivum and T. spelta. Bioinformatic analyses were performed with the use of the DADA2(1.8) package and R software (3.5.1). It was demonstrated that wheat, which is an important crop plant, was associated with beneficial endophytic bacteria inside the endosperms, germs, roots, leaves, and coleoptiles. Importantly, for the first time, biodiversity was recognized in the coleoptiles of the investigated wheat species. Flavobacterium, Pseudomonas and Janthinobacterium were shown to be common genera for both tested wheat cultivars. Among them, Pseudomonas was found to be the only endophytic genus accompanying both wheat species from the endosperm stage to the development of the leaf. Paenibacillus was recognized as a core genus for the 'Hondia' cv., whereas Pedobacter and Duganella constituted the core microbiome in the 'Rokosz' cv. In addition, the first insight into the unique and yet unrecognized endophytic microbiome of T. spelta is presented.
Assuntos
Microbiota , Triticum/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Microbiota/genética , Especificidade de Órgãos , Estruturas Vegetais/microbiologia , Especificidade da Espécie , Triticum/genéticaRESUMO
Microorganisms play an important role in animal nutrition, as they can be used as a source of food or feed. The aim of the study was to determine the nutritional elements and fatty acids contained in the biomass of methanotrophic bacteria. Four bacterial consortia composed of Methylocystis and Methylosinus originating from Sphagnum flexuosum (Sp1), S. magellanicum (Sp2), S. fallax II (Sp3), S. magellanicum IV (Sp4), and one composed of Methylocaldum, Methylosinus, and Methylocystis that originated from coalbed rock (Sk108) were studied. Nutritional elements were determined using the flame atomic absorption spectroscopy technique after a biomass mineralization stage, whereas the fatty acid content was analyzed with the GC technique. Additionally, the growth of biomass and dynamics of methane consumption were monitored. It was found that the methanotrophic biomass contained high concentrations of K, Mg, and Fe, i.e., approx. 9.6-19.1, 2.2-7.6, and 2.4-6.6 g kg-1, respectively. Consequently, the biomass can be viewed as an appropriate feed and/or feed additive for supplementation with macroelements and certain microelements. Moreover, all consortia demonstrated higher content of unsaturated acids than saturated ones. Thus, methanotrophic bacteria seem to be a good solution, in natural supplementation of animal diets.