Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 168: 413-422, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354633

RESUMO

Despite the increasing interest in bioplastics, there are still contradictory results on their actual biodegradability, which cause difficulties in choosing and developing appropriate sustainable treatment methods. Two biofoils (based on poly(butylene succinate) (PBS37) and cellulose (Cel37)) were anaerobically degraded during 100-day mesophilic (37 °C) and thermophilic (55 °C) tests (PBS55, Cel55). To overcome low degradation rates in mesophilic conditions, alkaline pre-treatment was also used (Pre-PBS37, Pre-Cel37). For comprehensive understanding of biodegradability, not only methane production (MP), but also the structure (topography, microscopic analysis), tensile properties, and FTIR spectra of the materials undergoing anaerobic degradation (AD) analysed. PBS37 and Pre-PBS37 were visible in 100-day degradation, and the cumulative MP reached 25.5 and 29.3 L/kg VS, respectively (4.3-4.9% of theoretical MP (TMP)). The biofoils started to show damage, losing their mechanical properties over 35 days. In contrast, PBS55 was visible for 14 days (cracks and fissures appeared), cumulative MP was 180.2 L/kg VS (30.2% of the TMP). Pieces of Cel were visible only during 2 days of degradation, and the MP was 311.4-315.0 L/kg VS (77.3-78.2% of the TMP) at 37 °C and 319.5 L/kg VS (79.3% of the TMP) at 55 °C. The FTIR spectra of Cel and PBS did not show shifts and formation of peaks. These findings showed differences in terms of the actual biodegradability of the bioplastics and provided a deeper understanding of their behaviour in AD, thus indicating limitations of AD as the final treatment of some materials, and also may support the establishment of guidelines for bioplastic management.


Assuntos
Reatores Biológicos , Celulose , Anaerobiose , Celulose/metabolismo , Metano/metabolismo , Temperatura , Biopolímeros/metabolismo
2.
Waste Manag ; 155: 40-52, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343599

RESUMO

Currently, the production of bio-based polymeric materials, of which poly(lactic acid) (PLA) is the most popular, has been increasing, causing the growth of PLA waste in municipal waste. Thus, it is necessary to develop sustainable methods for treating it. Methane production, resulting from anaerobic digestion (AD), is a potential end-of-life scenario for PLA waste that needs to be investigated. To obtain high efficiency of AD, thermophilic fermentation was applied, and to overcome low rates of biodegradation, hydrothermal (HT) and alkaline (A) pretreatments were used. For a deep insight into the process, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and microscopic and microbial analyses (based on 16S rDNA) were applied. For both untreated (PLA) and pretreated (PLAHT, PLAA) samples a high maximal methane production (MP) of 453 L/kg volatile solids (VS) was obtained, almost 100 % of the theoretical methane yield from PLA. The use of pretreatment allowed shortening of the time for obtaining maximal MP, especially the hydrothermal pretreatment, which shortened the overall time of MP 1.3-fold, and methane was produced at an almost 10 % higher rate (8.35 vs 7.79 L/(kg VS·d)). However, DSC and microscopic analyses revealed that, in all cases, methane was intensively produced i) after the reduction of the molecular mass of the PLA material and ii) also when PLA pieces were not visible. This should be considered when designing the operational time for the AD process. Parallel to the gradual biodegradation of PLA, the abundances of Firmicutes, Thermotogae, and Euryarcheota increased. With PLAHT, Syntrophobacteraceae, Thermoanaerobacteraceae, and methanogens were identified as potential key thermophilic PLA biodegraders.


Assuntos
Metano , Poliésteres , Anaerobiose , Metano/metabolismo , Biodegradação Ambiental , Poliésteres/metabolismo , Reatores Biológicos , Esgotos
3.
Sci Rep ; 12(1): 22260, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564508

RESUMO

Aerobic granular sludge (AGS) is a proven resource for the recovery of biopolymers like alginate-like polymers (ALP). This is the first report on the dynamics of ALP produced by AGS (ALP-AGS) in a full-scale wastewater treatment plant (WWTP), optimization of ALP recovery from AGS, and adsorption of cadmium (Cd2+) by ALP. Recovery of ALP was highest when using 120 mL of 0.2 M Na2CO3 at 70 °C for 45 min. Seasonal (1.5 years, over 3100 cycles) and intra-cycle changes in ALP-AGS in the WWTP were monitored. The ALP content in AGS increased in the transition period between winter and spring, reaching over 150 mg/g MLSS. In the batch reactor cycle, the ALP-AGS level peaked 2 h after the start of aeration (mean peak level: 120 mg/g MLSS), then decreased about two-fold by the end of the cycle. The ALP-AGS had a small surface area and a lamellar structure with crystalline outgrowths. The optimal conditions of Cd2+ adsorption with ALP were a dosage of 7.9 g d.m./L, a pH of 4-8, and an equilibrium time of 60 min. Carboxyl and hydroxyl groups were the key functional groups involved in Cd2+ adsorption. According to the Sips model, the maximum Cd2+ adsorption capacity of ALP-AGS was 29.5 mg/g d.m., which is similar to that of commercial alginate. AGS is a richer source of ALP than activated sludge, which ensures the cost-effectiveness of ALP recovery and increases the sustainability of wastewater treatment. Information on the chemical properties and yields of ALP from full-scale WWTPs is important for downstream applications with the recovered ALP.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Cádmio , Eliminação de Resíduos Líquidos , Polímeros , Alginatos , Adsorção , Reatores Biológicos , Aerobiose
4.
Artigo em Inglês | MEDLINE | ID: mdl-36293805

RESUMO

As landfilling is a common method for utilizing plastic waste at its end-of-life, it is important to present knowledge about the environmental and technical complications encountered during plastic disposal, and the formation and spread of microplastics (MPs) from landfills, to better understand the direct and indirect effects of MPs on pollution. Plastic waste around active and former landfills remains a source of MPs. The landfill output consists of leachate and gases created by combined biological, chemical, and physical processes. Thus, small particles and/or fibers, including MPs, are transported to the surroundings by air and by leachate. In this study, a special focus was given to the potential for the migration and release of toxic substances as the aging of plastic debris leads to the release of harmful volatile organic compounds via oxidative photodegradation. MPs are generally seen as the key vehicles and accumulators of non-biodegradable pollutants. Because of their small size, MPs are quickly transported over long distances throughout their surroundings. With large specific surface areas, they have the ability to absorb pollutants, and plastic monomers and additives can be leached out of MPs; thus, they can act as both vectors and carriers of pollutants in the environment.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Plásticos/toxicidade , Microplásticos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Gases , Eliminação de Resíduos/métodos
5.
Chemosphere ; 303(Pt 2): 135167, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35653865

RESUMO

Despite the dynamic development of aerobic granular sludge (AGS) technology in wastewater treatment, there is limited data on how the different properties of AGS and activated sludge (AS) translate into differences in waste sludge management. Waste sludge generated in both AGS and AS technology is the biggest waste stream generated in wastewater treatment plants (WWTPs). This study aimed to assess biogas production from waste AGS from a full-scale system. Additionally, the properties of the digestate were investigated in terms of its management in line with the assumptions of a circular economy. Both aspects are important because the characteristics of AGS differ from those of AS. Its dense, extracellular-polymer-rich granule structure makes the susceptibility of AGS to anaerobic stabilization lower than that of AS. Given the advantages of AGS for sustainable wastewater treatment and its increasing popularity, waste AGS management will pose a serious challenge for WWTP operators. Therefore, AGS from a full-scale municipal WWTP was valorized for biogas production by increasing the accessibility of the organics in the sludge by homogenization or ultrasound pretreatment. Ultrasound pretreatment released about an order of magnitude more organics from the biomass than homogenization and significantly improved the production of methane-rich biogas (455 L/kg VS, about 66% of CH4). The digestion time of pretreated AGS was reduced by 25% in comparison with that of untreated AGS making anaerobic digestion of AGS a feasible solution for sludge management. The AGS digestate was rich in Ca (77.0 g/kg TS), Mg (10.9 g/kg TS), N (35.1 g/kg TS) and P (32.4 g/kg TS), whereas its heavy metal levels and biochemical methane potential were low. AGS digestate is not only environmentally safe, but it can serve as a rich source of organics and elements essential for soil fertility and stability.


Assuntos
Metais Pesados , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química
6.
Waste Manag ; 149: 291-301, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760015

RESUMO

Although the requirements for overall recycling rates can only be met when organic recycling is not overlooked, information is scarce regarding adaption to biowaste composting of existing mechanical-biological treatment (MBT) plants originally designed for stabilization of organic municipal solid waste (OFMSW). Thus, this study aimed to assess the suitability of the operational conditions in the biological part of a full-scale MBT plant now used for stabilization of OFMSW (working line: closed-module-covered-pile-open-pile) with a view to producing compost from biowaste. Temperatures above 75 °C were maintained in the closed module and reached again in the covered pile, indicating that intensive organic-matter mineralization occurred in both stages. In the covered pile, the temperature sharply decreased, indicating depletion of easily biodegradable organic matter. An aerobic 4-day respiration test (AT4) value below 10 mg O2/g dry matter, the cut-off for assessing compost stability, was obtained after 8 weeks. However, a high content of humic substances (HS), reflecting compost maturity, was obtained only after 120 days. The increase in HS content proceeded in two phases. In the first phase (45-84 day), the rate constant and the rate of HS formation were lower than in the second phase (84-120 day) (0.072 vs. 0.087 day-1, 1.97 vs. 3.06 mg C/(g organic matter·d)). All the above-mentioned indicators and the nutrient content (N, P, K, Mg, Ca) in the compost indicates that the biological stage of an MBT plant can successfully treat biowaste. This is in accordance with a circular economy and will contribute to increasing recycling rates.


Assuntos
Compostagem , Eliminação de Resíduos , Substâncias Húmicas , Reciclagem , Solo , Resíduos Sólidos/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-35627395

RESUMO

Post-consumer bio-based textile wastes are any type of garment or household article made from manufactured bio-based textiles that the owner no longer needs and decides to discard. According to the hierarchy of waste management, post-consumer textile waste should be organically recycled. However, there is still a problem with the implementation of selective collection of textile waste followed by sorting, which would prepare the waste for organic recycling. A technically achievable strategy for sorted textile waste materials consisting of only one type of fiber material, multi-material textiles are a problem for recycling purposes. Waste textiles are composed of different materials, including natural as well as synthetic non-cellulosic fibers, making bioprocessing difficult. Various strategies for recovery of valuable polymers or monomers from textile waste, including concentrated and dilute acid hydrolysis, ionic liquids as well as enzymatic hydrolysis, have been discussed. One possible process for fiber recycling is fiber recovery. Fiber reclamation is extraction of fibers from textile waste and their reuse. To ensure that organic recycling is effective and that the degradation products of textile waste do not limit the quality and quantity of organic recycling products, bio-based textile waste should be biodegradable and compostable. Although waste textiles comprising a synthetic polymers fractions are considered a threat to the environment. However, their biodegradable part has great potential for production of biological products (e.g., ethanol and biogas, enzyme synthesis). A bio-based textile waste management system should promote the development and application of novel recycling techniques, such as further development of biochemical recycling processes and the textile waste should be preceded by recovery of non-biodegradable polymers to avoid contaminating the bioproducts with nano and microplastics.


Assuntos
Plásticos , Gerenciamento de Resíduos , Fibras na Dieta , Reciclagem , Têxteis , Resíduos
8.
Waste Manag ; 119: 295-305, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125938

RESUMO

Recently, the use of bio-based products, including biodegradable poly(lactic acid) (PLA), has increased, causing their rapid growth in municipal waste streams. The presence of PLA in biowaste may increase biogas production (BP). However, the rate of PLA biodegradation, which affects the time frame of anaerobic digestion, is a key parameter for an efficient process. In this study, detailed kinetics of BP from PLA were determined at 58 °C and 37 °C. At both temperatures, lag phases were observed: 40 days at 37 °C, and 10 days at 58 °C. After the lag phase BP proceeded in two phases, differed in process rate. At 58 °C, during the 1st phase (up to day 30), the rate of BP (rB1,58) equaled about 35 L/(kg OM·d). At the end of this phase, the amount of biogas was 710 L/kg OM, which constituted 84% of the maximal BP (831-849 L/kg OM). In the 2nd phase (10 days), only 13% of maximal BP was produced (rB2,58 of 16.1 L/(kg OM·d)). At 37 °C, maximal BP (obtained after 280 days) was 1.5-fold lower (558-570 L/kg OM) than at 58 °C. In the 1st phase (100 days), rB1,37 was 1.4 L/(kg OM·d); at the end of this phase, BP constituted merely 14% of the maximal BP. A majority of biogas was produced in the 2nd phase (the next 180 days), and rB2,37 doubled to 2.6 L/(kg OM·d)). At 58 °C, intensive biogas production took place when PLA pieces were still visible. At 37 °C, in contrast, biogas was mainly produced when the PLA pieces had been disintegrated. Although PLA anaerobically biodegrades and produces a high yield of biogas, the time frame of PLA digestion is much longer than that of biowaste and, in thermophilic conditions requires separate digesters. In mesophilic conditions, however, is unacceptable at technical scale.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Biodegradação Ambiental , Metano , Poliésteres , Temperatura
9.
Bioresour Technol ; 315: 123806, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688251

RESUMO

Wastewater is the major source of bisphenol A (BPA) in the environment, however, the results regarding main mechanisms of BPA biodegradation in wastewater treatment systems are divergent. The effect of BPA concentration in wastewater (0, 2, 6, 12 mg BPA/L) on respirometric activity and expression of selected genes in aerobic granules was examined. A real-time protocol for analysis of direct BPA-degrader activity targeting gene coding for ferredoxin was developed. At 2 mg BPA/L, respirometric activity of granules was the highest, which favored the fastest pollutant removal, and BPA-degraders were active at the beginning of the reactor cycle and no by-products of BPA degradation were detected. At 6 and 12 mg BPA/L, the activity of BPA-degraders was much higher, peaking after feeding and again when a BPA metabolite (3-(benzyloxy)benzoic acid) appeared in the reactor. The upregulation of gene coding for ammonia monooxygenase indicated that co-metabolism occurred mostly at 12 mg BPA/L.


Assuntos
Esgotos , Poluentes Químicos da Água/análise , Compostos Benzidrílicos , Biodegradação Ambiental , Reatores Biológicos , Fenóis/análise
10.
Waste Manag Res ; 37(5): 542-550, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30895880

RESUMO

Autoclaving of unsorted municipal solid waste is one of the solutions in waste management that maximises the amount of waste for recycling. After autoclaving, however, a large part of the waste is composed of unstabilised biodegradable fractions (organic remaining fraction, ORF), which may comprise up to 30% of autoclaved waste and cannot be landfilled without further stabilisation. Thus, the aim of this study was to investigate the effectiveness of aerobic stabilisation in a passively aerated reactor of organic remaining fraction after full-scale autoclaving of unsorted municipal solid waste. The organic remaining fraction had a volatile solids content of ca. 70%, a 4-day respiration activity test (AT4) of ca. 26 g O2 kg-1 total solids and a 21-day gas formation test (GP21) of ca. 235 dm3 kg-1 total solids. Stabilisation was conducted in a 550 L reactor with passive aeration (Stage I) and a periodically turned windrow (Stage II). The feedstocks consisted entirely of organic remaining fraction, or of organic remaining fraction with 10% inoculum (ORF + I). Inoculum constituted product of stabilisation of organic remaining fraction. During stabilisation of organic remaining fraction and ORF + I, thermophilic conditions were achieved, and the decreases of volatile solids, AT4 and GP21 could be described by 1 order kinetic models. The rate constants of volatile solids removal (kVS) were 0.033 and 0.068 d-1 for organic remaining fraction and ORF + I, respectively, and the thermophilic phase was shorter with ORF + I (25 days vs. 45 days). The decrease in GP21 corresponded to volatile solids decrease, but AT4 decreased sharply during the first 10 days of waste stabilisation in the reactor, indicating that the content of highly biodegradable organic matter decreased during this time.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Anaerobiose , Reatores Biológicos , Cinética , Resíduos Sólidos
11.
Bioresour Technol ; 272: 188-193, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30340184

RESUMO

This study aimed to systematically investigate the effect of organic loading on granule diameters, and on the composition of extracellular polymeric substances (EPS) in granules in various size-fractions at the beginning and end of the cycle of granular sludge sequencing batch reactor (GSBR). The organic loadings were 0.78 kg COD/(m3·d) (GSBR1), 1.16 kg COD/(m3·d) (GSBR2) and 1.53 kg COD/(m3·d) (GSBR3). Granules with a diameter of 0.5-1 mm had the most stable EPS content and composition. The smallest granules had the largest amount of bound EPS. The amount of loosely-bound EPS increased as granule diameters decreased; it was lowest in the famine phase at end of the cycle. The proteins/polysaccharides ratio decreased below 1 only in soluble EPS in the famine period. In GSBR1, granules with a diameter <0.5 mm predominated, and the increase in soluble EPS at end of the cycle was most substantial resulting in the lowest COD removal.


Assuntos
Matriz Extracelular de Substâncias Poliméricas/metabolismo , Aerobiose , Reatores Biológicos , Polissacarídeos/análise , Polissacarídeos/metabolismo , Proteínas/análise , Proteínas/metabolismo , Esgotos
12.
Waste Manag ; 77: 140-146, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30008403

RESUMO

The use of digestate in agriculture has been an efficient way to mitigate greenhouse gas emissions through the recycling of organic materials. However, harmful effects can arise if the organic matter is unstable. The goal of this study was to determine the biological stability (4-day oxygen demand for degradation of readily biodegradable organic matter (AT4), 21-day anaerobic biogas potential (GP21), and organic matter (VS) content) of six digestates after mesophilic digestion, and that of the corresponding post-digestates after psychrophilic post-digestion. Moreover, the kinetics of the changes in biological stability during post-digestion were determined. Mesophilic digestion of six multi-component agri-food feedstocks consisting of maize silage, bovine manure, mallow silage, pig slurry, glycerin, and spent wash from distillation was carried out at an organic loading rate of 2-3 kg VS/(m3·d), and at a hydraulic retention time of 45-60 days. Digestates were left in stirred reactors, imitating storage digesters, and kept for the next 120 d under anaerobic psychrophilic conditions (20 ±â€¯1 °C) for further stabilization. The additional biogas yields during post-digestion (50.9-114.9 dm3/kg TS) accounted for 8.5-27.4% of the biogas productivity of the feedstocks and 40-80% of that of the digestates. The efficiency of the loss of organic matter content was 22.5-40.2%. The decrease in the values of AT4, GP21 and VS content made the post-digestates more biologically stable than the digestates (digestates: AT4 = 13.7-67.0 mg O2/g TS, GP21 = 71.5-130.1 dm3/kg TS; post-digestates: AT4 = 6.6-37.4 mg O2/g TS, GP21 = 15.7-79.2 dm3/kg TS). For digestates and post-digestates, AT4 values strongly correlated with GP21 values.


Assuntos
Agricultura , Biocombustíveis , Esterco , Anaerobiose , Animais , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos
13.
Environ Sci Pollut Res Int ; 23(24): 24857-24870, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27662853

RESUMO

A technological system was developed for efficient nitrogen removal from real digester supernatant in a single reactor with shortened aeration to increase the economical aspects of wastewater treatment. The supernatant (600 mg TKN/L, low COD/N ratio of 2.2) was treated in batch reactors with aerobic granules (GSBRs) to test how one, two, or three non-aeration phases and acetate pulse feeding in the cycle affect the morphological and microbial properties of biomass. Introduction of one non-aeration phase in the cycle increased nitrogen removal efficiency by 11 % in comparison with constantly aerated GSBR. The additional non-aeration phases did not diminish the efficiency of ammonia oxidation but did favor nitrification to nitrate. Acetate pulse feeding in the reactor with three non-aeration phases raised the efficiency of nitrogen removal to 77 %; in parallel, the number of denitrifiers possessing nosZ genes and performing denitrification to N2 increased. Ammonia was oxidized by aerobic and anaerobic ammonia-oxidizing bacteria and heterotrophic nitrifiers (Pseudomonas sp. and Alcaligenes faecalis) that coexisted in granules. Azoarcus sp., Rhizobium sp., and Thauera sp. were core genera of denitrifiers in granules. An increase in the number of non-aeration phases diminished EPS content in the biomass and granule diameters and increased granule density.


Assuntos
Reatores Biológicos , Compostos de Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Acetatos/metabolismo , Aerobiose , Compostos de Nitrogênio/análise , Compostos de Nitrogênio/química , Esgotos/análise , Esgotos/química
14.
World J Microbiol Biotechnol ; 31(1): 75-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367416

RESUMO

This study determined how the activity and number of nitrogen-converting microorganisms varied with changes in hydraulic retention time (HRT) and the operating regime of aerobic granular sequencing batch reactors (GSBRs) treating high-nitrogen wastewater. Continuously aerated (O-mode) GSBRs were operated at HRTs of 10-, 13- and 19-h. Then the same reactors were operated at identical HRTs but the cycles started with an anoxic phase (A/O mode). To investigate the microbial communities, DNA- and RNA-based relative real-time PCR was used. In all experimental reactors ammonium was fully removed with a removal rate up to 75 mg N-NH4 (+)/(L·h), and nitrification efficiency was above 90 %. The efficiency of the removal of oxidized nitrogen forms decreased with the lengthening of HRT. The study found that variable oxic conditions (A/O mode) in the GSBR cycle stimulated the simultaneous activity of ammonium oxidizing bacteria (AOB), N2O-reducers, and Anammox bacteria in aerobic granules. With both modes, the activity of nitrogen-converting bacteria was highest with a 13-h HRT. Shortening HRT, resulted in higher chemical oxygen demand and nitrogen loadings, which favored the growth of Anammox microorganisms in granules and caused a decrease in the number of AOB. With all HRTs, the number of Anammox microorganisms was about 1.5-times higher in A/O mode than in O mode.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Nitrogênio/metabolismo , Aerobiose , Bactérias/genética , Reatores Biológicos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
15.
Bioresour Technol ; 171: 305-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218202

RESUMO

The potential for bisphenol A (BPA) removal by mixed consortia of immobilized microorganisms with high nitrification activity was investigated with BPA concentrations in the influent from 2.5 to 10.0 mg/L. The presence of BPA limited ammonium oxidation; nitrification efficiency decreased from 91.2±1.3% in the control series to 47.4±9.4% when BPA concentration in wastewater was the highest. The efficiency of BPA removal rose from 87.1±5.5% to 92.9±2.9% with increased BPA concentration in the influent. Measurement of oxygen uptake rates by biomass exposed to BPA showed that BPA was mainly removed by heterotrophic bacteria. A strong negative correlation between the BPA removal efficiency and nitrification efficiency indicated the limited contribution of ammonia-oxidizing bacteria (AOB) to BPA biodegradation. Exposure of biomass to BPA changed the quantity and diversity of AOB in the biomass as shown by real-time PCR and denaturing gradient gel electrophoresis.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Reatores Biológicos , Processos Heterotróficos/fisiologia , Nitrificação/fisiologia , Nitrosomonadaceae/metabolismo , Fenóis/isolamento & purificação , Análise por Conglomerados , Primers do DNA/genética , Eletroforese em Gel de Gradiente Desnaturante , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Regressão
16.
Bioresour Technol ; 154: 162-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24384323

RESUMO

This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers.


Assuntos
Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Esgotos/microbiologia , Purificação da Água/instrumentação , Aerobiose , Amônia/metabolismo , Bactérias/genética , Sequência de Bases , Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante , Desnitrificação , Genes Bacterianos , Nitrogênio/isolamento & purificação , Oxirredução , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Fatores de Tempo
17.
Waste Manag ; 34(2): 316-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24268917

RESUMO

Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m(3)/h. Using Darcy's equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7-2.88-fold.


Assuntos
Bactérias/metabolismo , Reatores Biológicos , Compostos Orgânicos/análise , Eliminação de Resíduos/métodos , Resíduos/análise , Ar/análise , Análise da Demanda Biológica de Oxigênio , Tamanho da Partícula , Temperatura
18.
Bioprocess Biosyst Eng ; 37(7): 1305-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24317485

RESUMO

Aerobic granule characteristic in sequencing batch reactors treating high-nitrogen digester supernatant was investigated at cycle lengths (t) of 6, 8 and 12 h with the COD/N ratios in the influent of 4.5 and 2.3. The biomass production (Y obs) correlated with the extracellular polymeric substances (EPS) in grams per COD removed. Denitrification efficiency significantly decreased as the amount of EPS in biomass increased, suggesting that organic assimilation in EPS hampers nitrogen removal. Granule hydrophobicity was highest at t of 8 h; the t has to be long enough to remove pollutants, but not so long that excessive biomass starvation causes extracellular protein consumption that decreases hydrophobicity. At a given t, reducing the COD/N ratio improved hydrophobicity that stimulates cell aggregation. At t of 6 h and the COD/N ratio of 2.3, the dominance of 0.5-1.0 mm granules favored simultaneous nitrification and denitrification and resulted in the highest nitrogen removal.


Assuntos
Nitrogênio/química , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos , Aerobiose , Biomassa , Biotecnologia/métodos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Nitrificação , Esgotos , Resistência ao Cisalhamento , Fatores de Tempo , Microbiologia da Água
19.
Chemosphere ; 90(8): 2208-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23089393

RESUMO

Anaerobic sludge digester supernatant characterized by 569 mg TKN L(-1), high color and a COD/N ratio of 1.4 was treated in granular sequencing batch reactors (GSBRs) followed by post-denitrification (P-D) and ultrafiltration (UF) steps. The use of granular sludge allowed for the oxidation of ammonium in anaerobic digester supernatant at all investigated GSBR cycle lengths of 6, 8 and 12 h. The highest ammonium removal rate (15 mg N g(-1) VSS h(-1)) with removal efficiency of 99% was noted at 8 h. Since the GSBR effluent was characterized by a high concentration of nitrites, slowly-degradable substances and biomass, additional purification steps were applied. In P-D stage, the microbial activity of granular biomass in the GSBR effluent was implemented. The P-D was supported by external carbon source addition and the most advantageous variant comprised dosing of half of the theoretical acetate dose for nitrite reduction in the 3-h intervals. The use of the system consisting of the GSBR with 8 h, an optimal P-D variant and a UF for the treatment of anaerobic digester supernatant allowed for the 99%, 71% and 97% reductions of TKN, COD and color, respectively.


Assuntos
Reatores Biológicos , Compostos de Amônio Quaternário/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Anaerobiose , Desnitrificação , Compostos de Amônio Quaternário/análise , Ultrafiltração , Poluentes Químicos da Água/análise
20.
Pol J Microbiol ; 61(1): 41-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22708345

RESUMO

A bacterial community in activated sludge from a full-scale municipal wastewater treatment plant was monitored throughout the year with the use of FISH, RISA and DGGE techniques. In the investigated range of temperatures (11.9-21.6 degrees C), a rise in temperature resulted in a lower total bacteria richness, while organic load rate changes from 0.09 to 0.21 g COD x g TSS(-1) x d(-1) were positively correlated with the number of bands in RISA patterns. The most diverse pattern (29 different bands) was characteristic for the activated sludge sample collected at the end of January at wastewater temperature of 11.9 degrees C. The ammonia-oxidising bacteria community did not change during the study, and comprised of 4 different bacterial populations with one dominant species closely related to Nitrosospira sp. REGAU (GenBank accession number AY635572.1). The percentage of ammonia-oxidising bacteria in the activated sludge varied from 6.2 to 19.5% and depended on temperature (R = 0.61, p = 0:02) and organic load rate (R = -0.55, p = 0.04).


Assuntos
Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/genética , Bactérias/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Hibridização in Situ Fluorescente , Desnaturação de Ácido Nucleico , Análise de Sequência de DNA , Temperatura , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA