Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(6): 830-838, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759646

RESUMO

The differentiation of human pluripotent stem cells into ventral mesencephalic dopaminergic (DA) fate is relevant for the treatment of Parkinson's disease. Shortcuts to obtaining DA cells through direct reprogramming often include forced expression of the transcription factor LMX1A. Although reprogramming with LMX1A can generate tyrosine hydroxylase (TH)-positive cells, their regional identity remains elusive. Using an in vitro model of early human neural tube patterning, we report that forced LMX1A expression induced a ventral-to-dorsal fate shift along the entire neuroaxis with the emergence of roof plate fates despite the presence of ventralizing molecules. The LMX1A-expressing progenitors gave rise to grafts containing roof plate-derived choroid plexus cysts as well as ectopically induced TH-positive neurons of a forebrain identity. Early activation of LMX1A prior to floor plate specification was necessary for the dorsalizing effect. Our work suggests using caution in employing LMX1A for the induction of DA fate, as this factor may generate roof plate rather than midbrain fates.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Embrionárias Humanas , Proteínas com Homeodomínio LIM , Mesencéfalo , Fatores de Transcrição , Humanos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/citologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Padronização Corporal/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento
2.
Mol Ther ; 31(4): 1123-1135, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710491

RESUMO

Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.


Assuntos
Agmatina , Dor Crônica , Humanos , Ratos , Camundongos , Animais , Dor Crônica/terapia , Roedores/metabolismo , Agmatina/farmacologia , Receptores de N-Metil-D-Aspartato
3.
J Transl Med ; 18(1): 309, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771027

RESUMO

BACKGROUND: The intrathecal (IT) dosing route introduces drugs directly into the CSF to bypass the blood-brain barrier and gain direct access to the CNS. We evaluated the use of convective forces acting on the cerebrospinal fluid as a means for increasing rostral delivery of IT dosed radioactive tracer molecules and antisense oligonucleotides (ASO) in the monkey CNS. We also measured the cerebral spinal fluid (CSF) volume in a group of cynomolgus monkeys. METHODS: There are three studies presented, in each of which cynomolgus monkeys were injected into the IT space with radioactive tracer molecules and/or ASO by lumbar puncture in either a low or high volume. The first study used the radioactive tracer 64Cu-DOTA and PET imaging to evaluate the effect of the convective forces. The second study combined the injection of the radioactive tracer 99mTc-DTPA and ASO, then used SPECT imaging and ex vivo tissue analysis of the effects of convective forces to bridge between the tracer and the ASO distributions. The third experiment evaluated the effects of different injection volumes on the distribution of an ASO. In the course of performing these studies we also measured the CSF volume in the subject monkeys by Magnetic Resonance Imaging. RESULTS: It was consistently found that larger bolus dose volumes produced greater rostral distribution along the neuraxis. Thoracic percussive treatment also increased rostral distribution of low volume injections. There was little added benefit on distribution by combining the thoracic percussive treatment with the high-volume injection. The CSF volume of the monkeys was found to be 11.9 ± 1.6 cm3. CONCLUSIONS: These results indicate that increasing convective forces after IT injection increases distribution of molecules up the neuraxis. In particular, the use of high IT injection volumes will be useful to increase rostral CNS distribution of therapeutic ASOs for CNS diseases in the clinic.


Assuntos
Sistema Nervoso Central , Oligonucleotídeos Antissenso , Animais , Barreira Hematoencefálica , Injeções Espinhais , Macaca fascicularis
4.
JCI Insight ; 1(2): e85311, 2016 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-27699254

RESUMO

The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders.


Assuntos
Sistema Nervoso Central/diagnóstico por imagem , Sistemas de Liberação de Medicamentos , Injeções Espinhais , Imagem Molecular , Animais , Líquido Cefalorraquidiano , Humanos , Isótopos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Albumina Sérica Humana , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
5.
Acta Neuropathol Commun ; 3: 84, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666562

RESUMO

BACKGROUND: The early clinical trials using fetal ventral mesencephalic (VM) allografts in Parkinson's disease (PD) patients have shown efficacy (albeit not in all cases) and have paved the way for further development of cell replacement therapy strategies in PD. The preclinical work that led to these clinical trials used allografts of fetal VM tissue placed into 6-OHDA lesioned rats, while the patients received similar allografts under cover of immunosuppression in an α-synuclein disease state. Thus developing models that more faithfully replicate the clinical scenario would be a useful tool for the translation of such cell-based therapies to the clinic. RESULTS: Here, we show that while providing functional recovery, transplantation of fetal dopamine neurons into the AAV-α-synuclein rat model of PD resulted in smaller-sized grafts as compared to similar grafts placed into the 6-OHDA-lesioned striatum. Additionally, we found that cyclosporin treatment was able to promote the survival of the transplanted cells in this allografted state and surprisingly also provided therapeutic benefit in sham-operated animals. We demonstrated that delayed cyclosporin treatment afforded neurorestoration in three complementary models of PD including the Thy1-α-synuclein transgenic mouse, a novel AAV-α-synuclein mouse model, and the MPTP mouse model. We then explored the mechanisms for this benefit of cyclosporin and found it was mediated by both cell-autonomous mechanisms and non-cell autonomous mechanisms. CONCLUSION: This study provides compelling evidence in favor for the use of immunosuppression in all grafted PD patients receiving cell replacement therapy, regardless of the immunological mismatch between donor and host cells, and also suggests that cyclosporine treatment itself may act as a disease-modifying therapy in all PD patients.


Assuntos
Transplante de Células/métodos , Ciclosporina/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/cirurgia , Animais , Células Cultivadas , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Feminino , Humanos , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Neurônios/transplante , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
6.
Expert Opin Drug Deliv ; 12(2): 283-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25510418

RESUMO

INTRODUCTION: Mucopolysaccharidoses (MPS) are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent, the nervous system is not adequately responsive to current therapeutic approaches. AREAS COVERED: Recent advances in gene therapy show great promise for treating MPS. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of MPS. EXPERT OPINION: Gene therapy for treating neurological manifestations of MPS can be achieved by intraventricular, intrathecal, intranasal and systemic administrations. The intraventricular route of administration appears to provide the most widespread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain. The systemic route of delivery via intravenous infusion can also achieve widespread delivery to the CNS; however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of MPS.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Mucopolissacaridoses/terapia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Dependovirus/genética , Terapia de Reposição de Enzimas/métodos , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/fisiopatologia
7.
Proc Natl Acad Sci U S A ; 110(17): 7038-43, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23530235

RESUMO

Cellular reprogramming is a new and rapidly emerging field in which somatic cells can be turned into pluripotent stem cells or other somatic cell types simply by the expression of specific combinations of genes. By viral expression of neural fate determinants, it is possible to directly reprogram mouse and human fibroblasts into functional neurons, also known as induced neurons. The resulting cells are nonproliferating and present an alternative to induced pluripotent stem cells for obtaining patient- and disease-specific neurons to be used for disease modeling and for development of cell therapy. In addition, because the cells do not pass a stem cell intermediate, direct neural conversion has the potential to be performed in vivo. In this study, we show that transplanted human fibroblasts and human astrocytes, which are engineered to express inducible forms of neural reprogramming genes, convert into neurons when reprogramming genes are activated after transplantation. Using a transgenic mouse model to specifically direct expression of reprogramming genes to parenchymal astrocytes residing in the striatum, we also show that endogenous mouse astrocytes can be directly converted into neural nuclei (NeuN)-expressing neurons in situ. Taken together, our data provide proof of principle that direct neural conversion can take place in the adult rodent brain when using transplanted human cells or endogenous mouse cells as a starting cell for neural conversion.


Assuntos
Astrócitos/transplante , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Fibroblastos/transplante , Neurônios/citologia , Animais , Astrócitos/citologia , Reprogramação Celular/efeitos dos fármacos , Corpo Estriado/citologia , Doxiciclina/farmacologia , Fibroblastos/citologia , Citometria de Fluxo , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Lentivirus , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Cell Rep ; 1(6): 703-14, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22813745

RESUMO

To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM) identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Envelhecimento/patologia , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Atividade Motora/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Tubo Neural/efeitos dos fármacos , Tubo Neural/embriologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Telencéfalo/citologia , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
9.
Mol Genet Metab ; 106(1): 131-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22420937

RESUMO

Here we provide the first evidence that therapeutic levels of a lysosomal enzyme can bypass the blood-brain barrier following intranasal administration. α-L-iduronidase (IDUA) activity was detected throughout the brains of IDUA-deficient mice following a single intranasal treatment with concentrated Aldurazyme® (laronidase) and was also detected after intranasal treatment with an adeno-associated virus (AAV) vector expressing human IDUA. These results suggest that intranasal routes of delivery may be efficacious in the treatment of lysosomal storage disorders.


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central/efeitos dos fármacos , Iduronidase/administração & dosagem , Iduronidase/genética , Mucopolissacaridose I/tratamento farmacológico , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Dependovirus/genética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/enzimologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/administração & dosagem
10.
Neurobiol Dis ; 43(1): 123-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21397026

RESUMO

The mucopolysaccharidoses (MPSs) are a group of 11 storage diseases caused by disruptions in glycosaminoglycan (GAG) catabolism, leading to their accumulation in lysosomes. Resultant multisystemic disease is manifested by growth delay, hepatosplenomegaly, skeletal dysplasias, cardiopulmonary obstruction, and, in severe MPS I, II, III, and VII, progressive neurocognitive decline. Some MPSs are treated by allogeneic hematopoietic stem cell transplantation (HSCT) and/or recombinant enzyme replacement therapy (ERT), but effectiveness is limited by central nervous system (CNS) access across the blood-brain barrier. To provide a high level of gene product to the CNS, we tested neonatal intracerebroventricular (ICV) infusion of an adeno-associated virus (AAV) serotype 8 vector transducing the human α-L-iduronidase gene in MPS I mice. Supranormal levels of iduronidase activity in the brain (including 40× normal levels in the hippocampus) were associated with transduction of neurons in motor and limbic areas identifiable by immunofluorescence staining. The treatment prevented accumulation of GAG and GM3 ganglioside storage materials and emergence of neurocognitive dysfunction in a modified Morris water maze test. The results suggest the potential of improved outcome for MPSs and other neurological diseases when a high level of gene expression can be achieved by direct, early administration of vector to the CNS.


Assuntos
Terapia Genética/métodos , Iduronidase/administração & dosagem , Iduronidase/genética , Mucopolissacaridose I/prevenção & controle , Mucopolissacaridose I/terapia , Transdução Genética/métodos , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Iduronidase/biossíntese , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Mutantes , Mucopolissacaridose I/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA