Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1212197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020776

RESUMO

Introduction: People with Alzheimer's disease (AD) experience more rapid declines in their ability to form hippocampal-dependent memories than cognitively normal healthy adults. Degeneration of the whole hippocampal formation has previously been found to covary with declines in learning and memory, but the associations between subfield-specific hippocampal neurodegeneration and cognitive impairments are not well characterized in AD. To improve prognostic procedures, it is critical to establish in which hippocampal subfields atrophy relates to domain-specific cognitive declines among people along the AD spectrum. In this study, we examine high-resolution structural magnetic resonance imaging (MRI) of the medial temporal lobe and extensive neuropsychological data from 29 amyloid-positive people on the AD spectrum and 17 demographically-matched amyloid-negative healthy controls. Methods: Participants completed a battery of neuropsychological exams including select tests of immediate recollection, delayed recollection, and general cognitive status (i.e., performance on the Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). Hippocampal subfield volumes (CA1, CA2, CA3, dentate gyrus, and subiculum) were measured using a dedicated MRI slab sequence targeting the medial temporal lobe and used to compute distance metrics to quantify AD spectrum-specific atrophic patterns and their impact on cognitive outcomes. Results: Our results replicate prior studies showing that CA1, dentate gyrus, and subiculum hippocampal subfield volumes were significantly reduced in AD spectrum participants compared to amyloid-negative controls, whereas CA2 and CA3 did not exhibit such patterns of atrophy. Moreover, degeneration of the subiculum along the AD spectrum was linked to a significant decline in general cognitive status measured by the MMSE, while degeneration scores of the CA1 and dentate gyrus were more widely associated with declines on the MMSE and tests of learning and memory. Discussion: These findings provide evidence that subfield-specific patterns of hippocampal degeneration, in combination with cognitive assessments, may constitute a sensitive prognostic approach and could be used to better track disease trajectories among individuals on the AD spectrum.

2.
Neurobiol Dis ; 186: 106283, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683957

RESUMO

People with HIV (PWH) often develop HIV-related neurological impairments known as HIV-associated neurocognitive disorder (HAND), but cognitive dysfunction in older PWH may also be due to age-related disorders such as Alzheimer's disease (AD). Discerning these two conditions is challenging since the specific neural characteristics are not well understood and limited studies have probed HAND and AD spectrum (ADS) directly. We examined the neural dynamics underlying motor processing during cognitive interference using magnetoencephalography (MEG) in 22 biomarker-confirmed patients on the ADS, 22 older participants diagnosed with HAND, and 30 healthy aging controls. MEG data were transformed into the time-frequency domain to examine movement-related oscillatory activity and the impact of cognitive interference on distinct stages of motor programming. Both cognitively impaired groups (ADS/HAND) performed significantly worse on the task (e.g., less accurate and slower reaction time) and exhibited reductions in frontal and cerebellar beta and parietal gamma activity relative to controls. Disease-specific aberrations were also detected such that those with HAND exhibited weaker gamma interference effects than those on the ADS in frontoparietal and motor areas. Additionally, temporally distinct beta interference effects were identified, with ADS participants exhibiting stronger beta interference activity in the temporal cortex during motor planning, along with weaker beta interference oscillations dispersed across frontoparietal and cerebellar cortices during movement execution relative to those with HAND. These results indicate both overlapping and distinct neurophysiological aberrations in those with ADS disorders or HAND in key motor and top-down cognitive processing regions during cognitive interference and provide new evidence for distinct neuropathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Infecções por HIV , Humanos , Idoso , Doença de Alzheimer/complicações , Transtornos Neurocognitivos , Disfunção Cognitiva/etiologia , Envelhecimento
3.
EBioMedicine ; 92: 104610, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37182265

RESUMO

BACKGROUND: Alterations in resting-state neural activity have been reported in people with sleep disruptions and in patients with Alzheimer's disease, but the direct impact of sleep quality on Alzheimer's disease-related neurophysiological aberrations is unclear. METHODS: We collected cross-sectional resting-state magnetoencephalography and extensive neuropsychological and clinical data from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal older control participants. Sleep efficiency was quantified using the Pittsburgh Sleep Quality Index. FINDINGS: Neural activity in the delta frequency range was differentially affected by poor sleep in patients on the Alzheimer's disease spectrum. Such neural changes were related to processing speed abilities and regional amyloid accumulation, and these associations were mediated and moderated, respectively, by sleep quality. INTERPRETATION: Together, our results point to a mechanistic role for sleep disturbances in the widely reported neurophysiological aberrations seen in patients on the Alzheimer's disease spectrum, with implications for basic research and clinical intervention. FUNDING: National Institutes of Health, USA.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Deficiências na Proteostase , Humanos , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Qualidade do Sono , Estudos Transversais , Testes Neuropsicológicos , Disfunção Cognitiva/psicologia
4.
Aging (Albany NY) ; 15(2): 524-541, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656738

RESUMO

People with HIV (PWH) frequently experience mild cognitive decline, which is typically attributed to HIV-associated neurocognitive disorder (HAND). However, such declines could also be a sign of early Alzheimer's disease (AD) in older PWH. Distinguishing these two pathologies in PWH is exceedingly difficult, as there is a major knowledge gap regarding their neural and neuropsychological bases. In the current study, we begin to address this knowledge gap by recording magnetoencephalography (MEG) during a flanker interference task in 31 biomarker-confirmed patients on the AD spectrum (ADS), 25 older participants with HAND, and 31 cognitively-normal controls. MEG data was examined in the time-frequency domain using a data-driven approach. Our results indicated that the clinical groups (ADS/HAND) performed significantly worse than controls on the task and exhibited aberrations in interference-related theta and alpha oscillations, some of which were disease-specific. Specifically, patients (ADS/HAND) exhibited weaker interference activity in frontoparietal and cingulate cortices compared to controls, while the ADS group exhibited stronger theta interference than those with HAND in frontoparietal, occipital, and temporal cortices. These results reveal overlapping and distinct patterns of neurophysiological alterations among those with ADS and HAND in attentional processing centers and suggest the existence of unique oscillatory markers of each condition.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Infecções por HIV , Humanos , Idoso , Doença de Alzheimer/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Magnetoencefalografia , Infecções por HIV/complicações , Transtornos Neurocognitivos , Encéfalo
5.
Cereb Cortex ; 33(6): 3181-3192, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35855581

RESUMO

Adults with HIV frequently develop a form of mild cognitive impairment known as HIV-associated neurocognitive disorder (HAND), but presumably cognitive decline in older persons with HIV could also be attributable to Alzheimer's disease (AD). However, distinguishing these two conditions in individual patients is exceedingly difficult, as the distinct neural and neuropsychological features are poorly understood and most studies to date have only investigated HAND or AD spectrum (ADS) disorders in isolation. The current study examined the neural dynamics underlying visuospatial processing using magnetoencephalography (MEG) in 31 biomarker-confirmed patients on the ADS, 26 older participants who met criteria for HAND, and 31 older cognitively normal controls. MEG data were examined in the time-frequency domain, and a data-driven approach was utilized to identify the neural dynamics underlying visuospatial processing. Both clinical groups (ADS/HAND) were significantly less accurate than controls on the task and exhibited stronger prefrontal theta oscillations compared to controls. Regarding disease-specific alterations, those with HAND exhibited stronger alpha oscillations than those on the ADS in frontoparietal and temporal cortices. These results indicate both common and unique neurophysiological alterations among those with ADS disorders and HAND in regions serving visuospatial processing and suggest the underlying neuropathological features are at least partially distinct.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Infecções por HIV , Adulto , Humanos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , HIV , Infecções por HIV/complicações , Magnetoencefalografia , Disfunção Cognitiva/etiologia , Encéfalo
6.
Brain Commun ; 4(4): fcac198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35974799

RESUMO

Recent research has indicated that rhythmic visual entrainment may be useful in clearing pathological protein deposits in the central nervous system of mouse models of Alzheimer's disease. However, visual entrainment studies in human patients with Alzheimer's disease are rare, and as such the degree to which these patients exhibit aberrations in the neural tracking of rhythmic visual stimuli is unknown. To fill this gap, we recorded magnetoencephalography during a 15 Hz visual entrainment paradigm in amyloid-positive patients on the Alzheimer's disease spectrum and compared their neural responses to a demographically matched group of biomarker-negative healthy controls. Magnetoencephalography data were imaged using a beamformer and virtual sensor data were extracted from the peak visual entrainment responses. Our results indicated that, relative to healthy controls, participants on the Alzheimer's disease spectrum exhibited significantly stronger 15 Hz entrainment in primary visual cortices relative to a pre-stimulus baseline period. However, the two groups exhibited comparable absolute levels of neural entrainment, and higher absolute levels of entertainment predicted greater Mini-mental Status Examination scores, such that those patients whose absolute entrainment amplitude was closer to the level seen in controls had better cognitive function. In addition, 15 Hz periodic activity, but not aperiodic activity, during the pre-stimulus baseline period was significantly decreased in patients on the Alzheimer's disease spectrum. This pattern of results indicates that patients on the Alzheimer's disease spectrum exhibited increased visual entrainment to rhythmic stimuli and that this increase is likely compensatory in nature. More broadly, these results show that visual entrainment is altered in patients with Alzheimer's disease and should be further examined in future studies, as changes in the capacity to entrain visual stimuli may prove useful as a marker of Alzheimer's disease progression.

7.
Brain Commun ; 4(4): fcac169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813878

RESUMO

Alzheimer's disease is the most common type of dementia in the general population, while HIV-associated neurocognitive disorder is the most common neurological comorbidity in those infected with HIV and affects between 40 and 70% of this population. Both conditions are associated with cognitive impairment and have been associated with aberrant functioning in sensory cortices, but far less is known about their disparate effects on neural activity. Identifying such disparate effects is important because it may provide critical data on the similarities and differences in the neuropathology underlying cognitive decline in each condition. In the current study, we utilized magnetoencephalography, extensive neuropsychological testing and a paired-pulse somatosensory gating paradigm to probe differences in somatosensory processing in participants from two ongoing magnetoencephalography studies. The resulting participant groups included 27 cognitively normal controls, 26 participants with HIV-associated neurocognitive disorder and 21 amyloid biomarker-confirmed patients with Alzheimer's disease. The data were imaged using a beamformer and voxel time series were extracted to identify the oscillatory dynamics serving somatosensory processing, as well as the amplitude of spontaneous cortical activity preceding stimulation onset. Our findings indicated that people with Alzheimer's disease and HIV-associated neurocognitive disorder exhibit normal somatosensory gating but have distinct aberrations in other elements of somatosensory cortical function. Essentially, those with Alzheimer's disease exhibited accentuated neural responses to somatosensory stimulation, along with spontaneous gamma activity preceding stimulus onset. In contrast, those with HIV-associated neurocognitive disorder exhibited normal responses to somatosensory stimulation but had sharply elevated spontaneous gamma activity prior to stimulus onset. These distinct aberrations may reflect the impact of different neuropathological mechanisms underlying each condition. Further, given the differential pattern of deficits in somatosensory cortical function, these measures may function as unique biomarkers in each condition and be useful in identifying persons with HIV who may go on to develop Alzheimer's disease.

8.
Brain ; 145(6): 2177-2189, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35088842

RESUMO

An extensive electrophysiological literature has proposed a pathological 'slowing' of neuronal activity in patients on the Alzheimer's disease spectrum. Supported by numerous studies reporting increases in low-frequency and decreases in high-frequency neural oscillations, this pattern has been suggested as a stable biomarker with potential clinical utility. However, no spatially resolved metric of such slowing exists, stymieing efforts to understand its relation to proteinopathy and clinical outcomes. Further, the assumption that this slowing is occurring in spatially overlapping populations of neurons has not been empirically validated. In the current study, we collected cross-sectional resting state measures of neuronal activity using magnetoencephalography from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal biomarker-negative older adults. From these data, we compute and validate a new metric of spatially resolved oscillatory deviations from healthy ageing for each patient on the Alzheimer's disease spectrum. Using this Pathological Oscillatory Slowing Index, we show that patients on the Alzheimer's disease spectrum exhibit robust neuronal slowing across a network of temporal, parietal, cerebellar and prefrontal cortices. This slowing effect is shown to be directly relevant to clinical outcomes, as oscillatory slowing in temporal and parietal cortices significantly predicted both general (i.e. Montreal Cognitive Assessment scores) and domain-specific (i.e. attention, language and processing speed) cognitive function. Further, regional amyloid-ß accumulation, as measured by quantitative 18F florbetapir PET, robustly predicted the magnitude of this pathological neural slowing effect, and the strength of this relationship between amyloid-ß burden and neural slowing also predicted attentional impairments across patients. These findings provide empirical support for a spatially overlapping effect of oscillatory neural slowing in biomarker-confirmed patients on the Alzheimer's disease spectrum, and link this effect to both regional proteinopathy and cognitive outcomes in a spatially resolved manner. The Pathological Oscillatory Slowing Index also represents a novel metric that is of potentially high utility across a number of clinical neuroimaging applications, as oscillatory slowing has also been extensively documented in other patient populations, most notably Parkinson's disease, with divergent spectral and spatial features.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/patologia , Biomarcadores , Encéfalo/patologia , Estudos Transversais , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
9.
EBioMedicine ; 73: 103638, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689085

RESUMO

BACKGROUND: Alzheimer's disease (AD) is generally thought to spare primary sensory function; however, such interpretations have drawn from a literature that has rarely taken into account the variable cognitive declines seen in patients with AD. As these cognitive domains are now known to modulate cortical somatosensory processing, it remains possible that abnormalities in somatosensory function in patients with AD have been suppressed by neuropsychological variability in previous research. METHODS: In this study, we combine magnetoencephalographic (MEG) brain imaging during a paired-pulse somatosensory gating task with an extensive battery of neuropsychological tests to investigate the influence of cognitive variability on estimated differences in somatosensory function between biomarker-confirmed patients on the AD spectrum and cognitively-normal older adults. FINDINGS: We show that patients on the AD spectrum exhibit largely non-significant differences in somatosensory function when cognitive variability is not considered (p-value range: .020-.842). However, once attention and processing speed abilities are considered, robust differences in gamma-frequency somatosensory response amplitude (p < .001) and gating (p = .004) emerge, accompanied by significant statistical suppression effects. INTERPRETATION: These findings suggest that patients with AD exhibit insults to functional somatosensory processing in primary sensory cortices, but these effects are masked by variability in cognitive decline across individuals. FUNDING: National Institutes of Health, USA; Fremont Area Alzheimer's Fund, USA.


Assuntos
Doença de Alzheimer/complicações , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Córtex Somatossensorial/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Cognição , Feminino , Fluordesoxiglucose F18 , Neuroimagem Funcional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Córtex Somatossensorial/diagnóstico por imagem
10.
Alzheimers Res Ther ; 13(1): 139, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404472

RESUMO

BACKGROUND: Entrainment of neural oscillations in occipital cortices by external rhythmic visual stimuli has been proposed as a novel therapy for patients with Alzheimer's disease (AD). Despite this increased interest in visual neural oscillations in AD, little is known regarding their role in AD-related cognitive impairment and in particular during visuospatial processing. METHODS: We used source-imaged magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 35 biomarker-confirmed patients on the AD spectrum and 20 biomarker-negative older adults. Neuronal oscillatory responses were imaged to the level of the cortex, and group classifications and neurocognitive relationships were modeled using logistic and linear regression, respectively. RESULTS: Visuospatial neuronal oscillations in the theta, alpha, and gamma ranges significantly predicted the classification of patients on the AD spectrum. Importantly, the direction of these effects differed by response frequency, such that patients on the AD spectrum exhibited weaker alpha-frequency responses in lateral occipital regions, and stronger gamma-frequency responses in the primary visual cortex, as compared to biomarker-negative older adults. In addition, alpha and gamma, but not theta, oscillations robustly predicted cognitive status (i.e., MoCA and MMSE scores), such that patients with neural responses that deviated more from those of healthy older adults exhibited poorer cognitive performance. CONCLUSIONS: We find that the multi-spectral neural dynamics supporting visuospatial processing differentiate patients on the AD spectrum from cognitively normal, biomarker-negative older adults. Oscillations in the alpha and gamma bands also relate to cognitive status in ways that are informative for emerging clinical interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/complicações , Córtex Cerebral , Disfunção Cognitiva/etiologia , Humanos , Magnetoencefalografia , Lobo Occipital
11.
Alzheimers Dement (Amst) ; 13(1): e12200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095434

RESUMO

INTRODUCTION: Numerous studies have described aberrant patterns of rhythmic neural activity in patients along the Alzheimer's disease (AD) spectrum, yet the relationships between these pathological features and cognitive decline are uncertain. METHODS: We acquired magnetoencephalography (MEG) data from 38 amyloid-PET biomarker-confirmed patients on the AD spectrum and a comparison group of biomarker-negative cognitively normal (CN) healthy adults, alongside an extensive neuropsychological battery. RESULTS: By modeling whole-brain rhythmic neural activity with an extensive neuropsychological profile in patients on the AD spectrum, we show that the spectral and spatial features of deviations from healthy adults in neural population-level activity inform their relevance to domain-specific neurocognitive declines. DISCUSSION: Regional oscillatory activity represents a sensitive metric of neuronal pathology in patients on the AD spectrum. By considering not only the spatial, but also the spectral, definitions of cortical neuronal activity, we show that domain-specific cognitive declines can be better modeled in these individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA