Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 6203, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277474

RESUMO

Biomaterials hold promise for therapeutic applications in the central nervous system (CNS). Little is known about molecular factors that determine CNS foreign body responses (FBRs) in vivo, or about how such responses influence biomaterial function. Here, we probed these factors in mice using a platform of injectable hydrogels readily modified to present interfaces with different physiochemical properties to host cells. We found that biomaterial FBRs mimic specialized multicellular CNS wound responses not present in peripheral tissues, which serve to isolate damaged neural tissue and restore barrier functions. We show that the nature and intensity of CNS FBRs are determined by definable properties that significantly influence hydrogel functions, including resorption and molecular delivery when injected into healthy brain or stroke injuries. Cationic interfaces elicit stromal cell infiltration, peripherally derived inflammation, neural damage and amyloid production. Nonionic and anionic formulations show minimal levels of these responses, which contributes to superior bioactive molecular delivery. Our results identify specific molecular mechanisms that drive FBRs in the CNS and have important implications for developing effective biomaterials for CNS applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Reação a Corpo Estranho/prevenção & controle , Hidrogéis/farmacologia , Animais , Materiais Biocompatíveis/química , Biomimética , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Feminino , Humanos , Hidrogéis/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
PLoS One ; 15(7): e0219632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706829

RESUMO

INTRODUCTION: Surgical resection and systemic chemotherapy with temozolomide remain the mainstay for treatment of glioblastoma. However, many patients are not candidates for surgical resection given inaccessible tumor location or poor health status. Furthermore, despite being first line treatment, temozolomide has only limited efficacy. METHODS: The development of injectable hydrogel-based carrier systems allows for the delivery of a wide range of chemotherapeutics that can achieve high local concentrations, thus potentially avoiding systemic side effects and wide-spread neurotoxicity. To test this modality in a realistic environment, we developed a diblock copolypeptide hydrogel (DCH) capable of carrying and releasing paclitaxel, a compound that we found to be highly potent against primary gliomasphere cells. RESULTS: The DCH produced minimal tissue reactivity and was well tolerated in the immune-competent mouse brain. Paclitaxel-loaded hydrogel induced less tissue damage, cellular inflammation and reactive astrocytes than cremaphor-taxol (typical taxol-carrier) or hydrogel alone. In a deep subcortical xenograft model of glioblastoma in immunodeficient mice, injection of paclitaxel-loaded hydrogel led to local tumor control and improved survival. However, the tumor cells were highly migratory and were able to eventually escape the area of treatment. CONCLUSIONS: These findings suggest this technology may be ultimately applicable to patients with deep-seated inoperable tumors, but as currently formulated, complete tumor eradication would be highly unlikely. Future studies should focus on targeting the migratory potential of surviving cells.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Hidrogéis/química , Paclitaxel/uso terapêutico , Peptídeos/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sistema Nervoso Central/patologia , Portadores de Fármacos/química , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Paclitaxel/química , Taxa de Sobrevida , Temozolomida/química , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 30(8): 2216-2227, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31265254

RESUMO

"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.


Assuntos
Antirretrovirais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , Nanopartículas/uso terapêutico , Antirretrovirais/química , Células Cultivadas , Citoplasma/metabolismo , Liberação Controlada de Fármacos , Infecções por HIV/prevenção & controle , HIV-1 , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Nanopartículas/química , Nanopartículas/metabolismo , Ribonucleoproteínas
4.
Biomacromolecules ; 20(4): 1756-1764, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30875201

RESUMO

The preparation and characterization of a new set of well-defined polypeptides containing N-methylaminooxy side-chain functionality is described. These functional groups enabled the direct coupling of polypeptides with a variety of unmodified reducing saccharides in water to give neoglycopolypeptides in high yields. The use of different polypeptide scaffolds resulted in neoglycoconjugates with tunable chain conformations, hydrophobicity, and charge. These new neoglycopolypeptides were also found to be stable in aqueous media at pH 7.4 and 37 °C for 1 week. The combination of straightforward synthesis using unmodified saccharides, high yields of saccharide conjugation, and conjugate stability makes these polypeptides attractive candidates for development of degradable glycoprotein mimics.


Assuntos
Glicoconjugados , Peptídeos , Configuração de Carboidratos , Glicoconjugados/síntese química , Glicoconjugados/química , Concentração de Íons de Hidrogênio , Peptídeos/síntese química , Peptídeos/química
5.
Nature ; 561(7723): 396-400, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158698

RESUMO

Transected axons fail to regrow across anatomically complete spinal cord injuries (SCI) in adults. Diverse molecules can partially facilitate or attenuate axon growth during development or after injury1-3, but efficient reversal of this regrowth failure remains elusive4. Here we show that three factors that are essential for axon growth during development but are attenuated or lacking in adults-(i) neuron intrinsic growth capacity2,5-9, (ii) growth-supportive substrate10,11 and (iii) chemoattraction12,13-are all individually required and, in combination, are sufficient to stimulate robust axon regrowth across anatomically complete SCI lesions in adult rodents. We reactivated the growth capacity of mature descending propriospinal neurons with osteopontin, insulin-like growth factor 1 and ciliary-derived neurotrophic factor before SCI14,15; induced growth-supportive substrates with fibroblast growth factor 2 and epidermal growth factor; and chemoattracted propriospinal axons with glial-derived neurotrophic factor16,17 delivered via spatially and temporally controlled release from biomaterial depots18,19, placed sequentially after SCI. We show in both mice and rats that providing these three mechanisms in combination, but not individually, stimulated robust propriospinal axon regrowth through astrocyte scar borders and across lesion cores of non-neural tissue that was over 100-fold greater than controls. Stimulated, supported and chemoattracted propriospinal axons regrew a full spinal segment beyond lesion centres, passed well into spared neural tissue, formed terminal-like contacts exhibiting synaptic markers and conveyed a significant return of electrophysiological conduction capacity across lesions. Thus, overcoming the failure of axon regrowth across anatomically complete SCI lesions after maturity required the combined sequential reinstatement of several developmentally essential mechanisms that facilitate axon growth. These findings identify a mechanism-based biological repair strategy for complete SCI lesions that could be suitable to use with rehabilitation models designed to augment the functional recovery of remodelling circuits.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Animais , Astrócitos/patologia , Cicatriz/patologia , Eletrofisiologia , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hidrogéis , Laminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Proteoglicanas/metabolismo , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Regeneração da Medula Espinal , Células Estromais/patologia
6.
J Am Chem Soc ; 139(42): 15114-15121, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28976744

RESUMO

Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form ß-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the ß-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.


Assuntos
Hidrogéis/química , Hidrogéis/síntese química , Conformação Molecular , Peptídeos/química , Peptídeos/síntese química , Íons/química
7.
Nanoscale ; 5(19): 9214-21, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23934399

RESUMO

Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA