Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2799: 243-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727911

RESUMO

Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.


Assuntos
Comportamento Animal , Receptores de N-Metil-D-Aspartato , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Animal/efeitos dos fármacos , Larva/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos
2.
Sci Rep ; 14(1): 3395, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336823

RESUMO

Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line (grin1-/-) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1-/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.


Assuntos
Células-Tronco Neurais , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Telencéfalo/metabolismo
3.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37786708

RESUMO

Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line ( grin1 -/- ) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1 -/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.

4.
Neuropharmacology ; 240: 109703, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689262

RESUMO

The NMDA receptor (NMDAR) is a ubiquitously expressed glutamate-gated ion channel that plays key roles in brain development and function. Not surprisingly, a variety of disease-associated variants have been identified in genes encoding NMDAR subunits. A critical first step to assess whether these variants contribute to their associated disorder is to characterize their effect on receptor function. However, the complexity of NMDAR function makes this challenging, with many variants typically altering multiple functional properties. At synapses, NMDARs encode pre- and postsynaptic activity to carry a charge transfer that alters membrane excitability and a Ca2+ influx that has both short- and long-term signaling actions. Here, we characterized epilepsy-associated variants in GluN1 and GluN2A subunits with various phenotypic severity in HEK293 cells. To capture the complexity of NMDAR gating, we applied 10 glutamate pulses at 10 Hz to derive a charge integral. This assay is advantageous since it incorporates multiple gating parameters - activation, deactivation, and desensitization - into a single value. We then integrated this gating parameter with Mg2+ block and Ca2+ influx using fractional Ca2+ currents to generate indices of charge transfer and Ca2+ transfer over wide voltage ranges. This approach yields consolidated parameters that can be used as a reference to normalize channel block and allosteric modulation to better define potential patient treatment. This is especially true for variants in the transmembrane domain that affect not only receptor gating but also often Mg2+ block and Ca2+ permeation.

5.
J Biol Chem ; 299(10): 105227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673338

RESUMO

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.


Assuntos
Ácido Glutâmico , Multimerização Proteica , Receptores de AMPA , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Domínios Proteicos , Receptores de AMPA/química , Receptores de AMPA/genética , Transdução de Sinais , Subunidades Proteicas/química , Subunidades Proteicas/genética , Células HEK293 , Humanos
7.
Nat Commun ; 14(1): 1623, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959168

RESUMO

Kinetics of NMDA receptor (NMDAR) ion channel opening and closing contribute to their unique role in synaptic signaling. Agonist binding generates free energy to open a canonical gate at the M3 helix bundle crossing. Single channel activity is characterized by clusters, or periods of rapid opening and closing, that are separated by long silent periods. A conserved glycine in the outer most transmembrane helices, the M4 helices, regulates NMDAR function. Here we find that the GluN1 glycine mainly regulates single channel events within a cluster, whereas the GluN2 glycine mainly regulates entry and exit from clusters. Molecular dynamics simulations suggest that, whereas the GluN2 M4 (along with GluN2 pre-M1) regulates the gate at the M3 helix bundle crossing, the GluN1 glycine regulates a 'gate' at the M2 loop. Subsequent functional experiments support this interpretation. Thus, the distinct kinetics of NMDARs are mediated by two gates that are under subunit-specific regulation.


Assuntos
N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/química , Ativação do Canal Iônico/fisiologia , Simulação de Dinâmica Molecular , Glicina/metabolismo
8.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798164

RESUMO

AMPA receptor (AMPAR) auxiliary subunits are specialized, non-transient binding partners of AMPARs that modulate their ion channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs) and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of wild type and mutant AMPARs, possibly by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2 suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.

9.
Mol Autism ; 13(1): 38, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138431

RESUMO

BACKGROUND: Autism spectrum disorder (ASD), like many neurodevelopmental disorders, has complex and varied etiologies. Advances in genome sequencing have identified multiple candidate genes associated with ASD, including dozens of missense and nonsense mutations in the NMDAR subunit GluN2B, encoded by GRIN2B. NMDARs are glutamate-gated ion channels with key synaptic functions in excitatory neurotransmission. How alterations in these proteins impact neurodevelopment is poorly understood, in part because knockouts of GluN2B in rodents are lethal. METHODS: Here, we use CRISPR-Cas9 to generate zebrafish lacking GluN2B (grin2B-/-). Using these fish, we run an array of behavioral tests and perform whole-brain larval imaging to assay developmental roles and functions of GluN2B. RESULTS: We demonstrate that zebrafish GluN2B displays similar structural and functional properties to human GluN2B. Zebrafish lacking GluN2B (grin2B-/-) surprisingly survive into adulthood. Given the prevalence of social deficits in ASD, we assayed social preference in the grin2B-/- fish. Wild-type fish develop a strong social preference by 3 weeks post fertilization. In contrast, grin2B-/- fish at this age exhibit significantly reduced social preference. Notably, the lack of GluN2B does not result in a broad disruption of neurodevelopment, as grin2B-/- larvae do not show alterations in spontaneous or photic-evoked movements, are capable of prey capture, and exhibit learning. Whole-brain imaging of grin2B-/- larvae revealed reduction of an inhibitory neuron marker in the subpallium, a region linked to ASD in humans, but showed that overall brain size and E/I balance in grin2B-/- is comparable to wild type. LIMITATIONS: Zebrafish lacking GluN2B, while useful in studying developmental roles of GluN2B, are unlikely to model nuanced functional alterations of human missense mutations that are not complete loss of function. Additionally, detailed mammalian homologies for larval zebrafish brain subdivisions at the age of whole-brain imaging are not fully resolved. CONCLUSIONS: We demonstrate that zebrafish completely lacking the GluN2B subunit of the NMDAR, unlike rodent models, are viable into adulthood. Notably, they exhibit a highly specific deficit in social behavior. As such, this zebrafish model affords a unique opportunity to study the roles of GluN2B in ASD etiologies and establish a disease-relevant in vivo model for future studies.


Assuntos
Transtornos do Neurodesenvolvimento , Receptores de N-Metil-D-Aspartato , Peixe-Zebra , Animais , Códon sem Sentido , Ácido Glutâmico , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Peixe-Zebra/genética
10.
J Comp Neurol ; 530(4): 705-728, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34468021

RESUMO

Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.


Assuntos
Cálcio , Retina , Peixe-Zebra , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Retina/metabolismo , Sinapses/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Peixe-Zebra/metabolismo
11.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
12.
Neuropharmacology ; 194: 108624, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081993

RESUMO

NMDA receptors are ligand-gated ion channels that are found throughout the brain and are required for both brain development and many higher order functions. A variety of human patients with diverse clinical phenotypes have been identified that carry autoantibodies directed against NMDA receptor subunits. Here we focus on two general classes of autoantibodies, anti-GluN1 antibodies associated with anti-NMDA receptor encephalitis and anti-GluN2 antibodies associated with systemic lupus erythematosus (SLE). These two general classes of anti-NMDA receptor autoantibodies display a wide range of pathophysiological mechanisms from altering synaptic composition to gating of NMDARs. While we have made progress in understanding how these autoantibodies work at the molecular and cellular level, many unanswered questions remain including their long-term actions on brain function, the significance of clonal variations, and their effects on different NMDA receptor-expressing cell types in local circuits. This information will be needed to define fully the transition from anti-NMDA receptor autoantibodies to a clinical phenotype.


Assuntos
Autoanticorpos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encefalite Antirreceptor de N-Metil-D-Aspartato/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo , Camundongos
13.
J Physiol ; 599(2): 397-416, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32144935

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that contribute to nearly all brain processes. Not surprisingly then, genetic variations in the genes encoding NMDAR subunits can be associated with neurodevelopmental, neurological and psychiatric disorders. These disease-associated variants (DAVs) present challenges, such as defining how DAV-induced alterations in receptor function contribute to disease progression and how to treat the affected individual clinically. As a starting point to overcome these challenges, we need to refine our understanding of the complexity of NMDAR structure function. In this regard, DAVs have expanded our knowledge of NMDARs because they do not just target well-known structure-function motifs, but rather give an unbiased view of structural elements that are important to the biology of NMDARs. Indeed, established NMDAR structure-function motifs have been validated by the appearance of disorders in patients where these motifs have been altered, and DAVs have identified novel structural features in NMDARs such as gating triads and hinges in the gating machinery. Still, the majority of DAVs remain unexplored and occur at sites in the protein with unidentified function or alter receptor properties in multiple and unanticipated ways. Detailed mechanistic and structural investigations are required of both established and novel motifs to develop a highly refined pathomechanistic model that accounts for the complex machinery that regulates NMDARs. Such a model would provide a template for rational drug design and a starting point for personalized medicine.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
14.
Neuron ; 109(3): 488-501.e4, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264592

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
15.
J Neurosci ; 40(18): 3631-3645, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32245827

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that play critical roles in neuronal development and nervous system function. Here, we developed a model to study NMDARs in early development in zebrafish, by generating CRISPR-mediated lesions in the NMDAR genes, grin1a and grin1b, which encode the obligatory GluN1 subunits. While receptors containing grin1a or grin1b show high Ca2+ permeability, like their mammalian counterpart, grin1a is expressed earlier and more broadly in development than grin1b Both grin1a-/- and grin1b-/- zebrafish are viable. Unlike in rodents, where the grin1 knockout is embryonic lethal, grin1 double-mutant fish (grin1a-/-; grin1b-/-), which lack all NMDAR-mediated synaptic transmission, survive until ∼10 d dpf (days post fertilization), providing a unique opportunity to explore NMDAR function during development and in generating behaviors. Many behavioral defects in the grin1 double-mutant larvae, including abnormal evoked responses to light and acoustic stimuli, prey-capture deficits, and a failure to habituate to acoustic stimuli, are replicated by short-term treatment with the NMDAR antagonist MK-801, suggesting that they arise from acute effects of compromised NMDAR-mediated transmission. Other defects, however, such as periods of hyperactivity and alterations in place preference, are not phenocopied by MK-801, suggesting a developmental origin. Together, we have developed a unique model to study NMDARs in the developing vertebrate nervous system.SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by chemical neurotransmitters. One such ligand-gated ion channel, the NMDAR, impacts nearly all forms of nervous system function. It has been challenging, however, to study the prolonged absence of NMDARs in vertebrates, and hence their role in nervous system development, due to experimental limitations. Here, we demonstrate that zebrafish lacking all NMDAR transmission are viable through early development and are capable of a wide range of stereotypic behaviors. As such, this zebrafish model provides a unique opportunity to study the role of NMDAR in the development of the early vertebrate nervous system.


Assuntos
Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Estimulação Acústica/métodos , Animais , Animais Geneticamente Modificados , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Sistema Nervoso/efeitos dos fármacos , Estimulação Luminosa/métodos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores
16.
Nat Commun ; 11(1): 1403, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179753

RESUMO

Patients with Systemic lupus erythematosus (SLE) experience various peripheral and central nervous system manifestations including spatial memory impairment. A subset of autoantibodies (DNRAbs) cross-react with the GluN2A and GluN2B subunits of the NMDA receptor (NMDAR). We find that these DNRAbs act as positive allosteric modulators on NMDARs with GluN2A-containing NMDARs, even those containing a single GluN2A subunit, exhibiting a much greater sensitivity to DNRAbs than those with exclusively GluN2B. Accordingly, GluN2A-specific antagonists provide greater protection from DNRAb-mediated neuronal cell death than GluN2B antagonists. Using transgenic mice to perturb expression of either GluN2A or GluN2B in vivo, we find that DNRAb-mediated disruption of spatial memory characterized by early neuronal cell death and subsequent microglia-dependent pathologies requires GluN2A-containing NMDARs. Our results indicate that GluN2A-specific antagonists or negative allosteric modulators are strong candidates to treat SLE patients with nervous system dysfunction.


Assuntos
Autoanticorpos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/psicologia , Receptores de N-Metil-D-Aspartato/imunologia , Memória Espacial , Animais , Morte Celular , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/imunologia , Receptores de N-Metil-D-Aspartato/genética
17.
Brain Res ; 1736: 146699, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027866

RESUMO

GABAA receptors (GABAAR) are inhibitory ion channels ubiquitously expressed in the central nervous system and play critical roles in brain development and function. Benzodiazepines are positive allosteric modulators of GABAAR, enhancing channel opening frequency when GABA is bound to the receptor. Midazolam is a commonly used benzodiazepine. It is frequently used for premature infants, but the long-term consequences of its use in this patient population are not well established. Here, we studied the acute effects of midazolam on immature synapses. Using a rodent organotypic hippocampal slice preparation, we evaluated how midazolam affects inhibitory synaptic transmission onto CA1 pyramidal neurons. We found that 1 µM midazolam enhances evoked inhibitory post synaptic currents (eIPSCs) at a holding potential of -60 mV. Similarly, 1 µM midazolam enhances miniature IPSCs (mIPSCs) in CA1 pyramidal neurons at holding potentials of -60 mV and -30 mV. At depolarized holding potentials, however, midazolam no longer enhances mIPSCs. Depolarization of the postsynaptic cell by itself increases mIPSC decay, which occludes the allosteric effects of midazolam. These results provide insight into how a benzodiazepine and membrane voltage may modulate GABAAR function in developing circuits.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Midazolam/farmacologia , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Midazolam/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Receptores de GABA-A/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
18.
Hum Mutat ; 40(12): 2393-2413, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429998

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge transfer in addition to varied and complex influences on NMDAR functional properties, which may underlie the patients' phenotypes.


Assuntos
Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Criança , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Fenótipo , Conformação Proteica , Receptores de N-Metil-D-Aspartato/química , Xenopus laevis
19.
iScience ; 17: 10-23, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247447

RESUMO

Clearance of synaptic vesicle proteins from active zones may be rate limiting for sustained neurotransmission. Issues of clearance are critical at ribbon synapses, which continually release neurotransmitters for prolonged periods of time. We used synaptophysin-pHluorin (SypHy) to visualize protein clearance from active zones in retinal bipolar cell ribbon synapses. Depolarizing voltage steps gave rise to small step-like changes in fluorescence likely indicating release of single SypHy molecules from fused synaptic vesicles near active zones. Temporal and spatial fluorescence profiles of individual responses were highly variable, but ensemble averages were well fit by clearance via free diffusion using Monte Carlo simulations. The rate of fluorescence decay of ensemble averages varied with the time and location of the fusion event, with clearance being most rapid at the onset of a stimulus when release rate is the highest.

20.
J Gen Physiol ; 151(4): 396-399, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819719
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA