Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 132(4)2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30404824

RESUMO

Cytoskeletal networks of actin filaments and myosin motors drive many dynamic cell processes. A key characteristic of these networks is their contractility. Despite intense experimental and theoretical efforts, it is not clear what mechanism favors network contraction over expansion. Recent work points to a dominant role for the nonlinear mechanical response of actin filaments, which can withstand stretching but buckle upon compression. Here, we present an alternative mechanism. We study how interactions between actin and myosin-2 at the single-filament level translate into contraction at the network scale by performing time-lapse imaging on reconstituted quasi-2D networks mimicking the cell cortex. We observe myosin end-dwelling after it runs processively along actin filaments. This leads to transport and clustering of actin filament ends and the formation of transiently stable bipolar structures. Further, we show that myosin-driven polarity sorting produces polar actin asters, which act as contractile nodes that drive contraction in crosslinked networks. Computer simulations comparing the roles of the end-dwelling mechanism and a buckling-dependent mechanism show that the relative contribution of end-dwelling contraction increases as the network mesh-size decreases.


Assuntos
Actinas/fisiologia , Simulação por Computador , Citoesqueleto/fisiologia , Miosinas/fisiologia , Citoesqueleto de Actina/química , Actomiosina/fisiologia , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia
2.
J Vis Exp ; (115)2016 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-27684088

RESUMO

Biological cells are usually observed on flat (2D) surfaces. This condition is not physiological, and phenotypes and shapes are highly variable. Screening based on cells in such environments have therefore serious limitations: cell organelles show extreme phenotypes, cell morphologies and sizes are heterogeneous and/or specific cell organelles cannot be properly visualized. In addition, cells in vivo are located in a 3D environment; in this situation, cells show different phenotypes mainly because of their interaction with the surrounding extracellular matrix of the tissue. In order to standardize and generate order of single cells in a physiologically-relevant 3D environment for cell-based assays, we report here the microfabrication and applications of a device for in vitro 3D cell culture. This device consists of a 2D array of microcavities (typically 10(5) cavities/cm(2)), each filled with single cells or embryos. Cell position, shape, polarity and internal cell organization become then normalized showing a 3D architecture. We used replica molding to pattern an array of microcavities, 'eggcups', onto a thin polydimethylsiloxane (PDMS) layer adhered on a coverslip. Cavities were covered with fibronectin to facilitate adhesion. Cells were inserted by centrifugation. Filling percentage was optimized for each system allowing up to 80%. Cells and embryos viability was confirmed. We applied this methodology for the visualization of cellular organelles, such as nucleus and Golgi apparatus, and to study active processes, such as the closure of the cytokinetic ring during cell mitosis. This device allowed the identification of new features, such as periodic accumulations and inhomogeneities of myosin and actin during the cytokinetic ring closure and compacted phenotypes for Golgi and nucleus alignment. We characterized the method for mammalian cells, fission yeast, budding yeast, C. elegans with specific adaptation in each case. Finally, the characteristics of this device make it particularly interesting for drug screening assays and personalized medicine.


Assuntos
Técnicas de Cultura Embrionária/instrumentação , Técnicas de Cultura Embrionária/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Animais , Caenorhabditis elegans/citologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Saccharomycetales/citologia , Schizosaccharomyces/citologia
3.
Nat Commun ; 7: 11860, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363521

RESUMO

The cytokinetic ring is essential for separating daughter cells during division. It consists of actin filaments and myosin motors that are generally assumed to organize as sarcomeres similar to skeletal muscles. However, direct evidence is lacking. Here we show that the internal organization and dynamics of rings are different from sarcomeres and distinct in different cell types. Using micro-cavities to orient rings in single focal planes, we find in mammalian cells a transition from a homogeneous distribution to a periodic pattern of myosin clusters at the onset of constriction. In contrast, in fission yeast, myosin clusters rotate prior to and during constriction. Theoretical analysis indicates that both patterns result from acto-myosin self-organization and reveals differences in the respective stresses. These findings suggest distinct functional roles for rings: contraction in mammalian cells and transport in fission yeast. Thus self-organization under different conditions may be a generic feature for regulating morphogenesis in vivo.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Citocinese/fisiologia , Miosinas/ultraestrutura , Rotação , Proteínas de Schizosaccharomyces pombe/ultraestrutura , Citoesqueleto de Actina/metabolismo , Divisão Celular/fisiologia , Células HeLa , Humanos , Microscopia Confocal , Miosinas/metabolismo , Sarcômeros/ultraestrutura , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Biophys J ; 107(7): 1513-22, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296303

RESUMO

Cell migration is a crucial event during development and in disease. Mechanical constraints and chemical gradients can contribute to the establishment of cell direction, but their respective roles remain poorly understood. Using a microfabricated topographical ratchet, we show that the nucleus dictates the direction of cell movement through mechanical guidance by its environment. We demonstrate that this direction can be tuned by combining the topographical ratchet with a biochemical gradient of fibronectin adhesion. We report competition and cooperation between the two external cues. We also quantitatively compare the measurements associated with the trajectory of a model that treats cells as fluctuating particles trapped in a periodic asymmetric potential. We show that the cell nucleus contributes to the strength of the trap, whereas cell protrusions guided by the adhesive gradients add a constant tunable bias to the direction of cell motion.


Assuntos
Movimento Celular , Animais , Adesão Celular , Núcleo Celular/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA