Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2216367120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791111

RESUMO

Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated d-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperature T, magnetic field B to 60 T, and pressure P to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6 to address the question of whether FeSi is a d-electron analogue of an f-electron Kondo insulator and, in addition, a "topological Kondo insulator" (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperature TS = 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression of TS. Several studies of ρ(T) under pressure on SmB6 reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at which TS vanishes, although the energy gaps in SmB6 initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature at TS ≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed at TS ≈ 4.5 K for SmB6.

2.
Proc Natl Acad Sci U S A ; 118(27)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187886

RESUMO

In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound [Formula: see text] (URS) into the so-called hidden-order (HO) phase when the temperature drops below [Formula: see text] K. Here, we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle-resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a nonrigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO to AFM phase transition.

3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975950

RESUMO

Electrical resistivity measurements were performed on single crystals of URu2-x Os x Si2 up to x = 0.28 under hydrostatic pressure up to P = 2 GPa. As the Os concentration, x, is increased, 1) the lattice expands, creating an effective negative chemical pressure Pch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressure Pc is required to induce the HO→LMAFM phase transition. We compare the behavior of the T(x, P) phase boundary reported here for the URu2-x Os x Si2 system with previous reports of enhanced HO in URu2Si2 upon tuning with P or similarly in URu2-x Fe x Si2 upon tuning with positive Pch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2 We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metal d-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2 Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and the d-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.

4.
Nanoscale ; 13(9): 4985-4994, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33634814

RESUMO

We investigate the local nanoscale changes of the magnetic anisotropy of a Ni film subject to an inverse magnetostrictive effect by proximity to a V2O3 layer. Using temperature-dependent photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism (XMCD), direct images of the Ni spin alignment across the first-order structural phase transition (SPT) of V2O3 were obtained. We find an abrupt temperature-driven reorientation of the Ni magnetic domains across the SPT, which is associated with a large increase of the coercive field. Moreover, angular dependent ferromagnetic resonance (FMR) shows a remarkable change in the magnetic anisotropy of the Ni film across the SPT of V2O3. Micromagnetic simulations based on these results are in quantitative agreement with the PEEM data. Direct measurements of the lateral correlation length of the Ni domains from XMCD images show an increase of almost one order of magnitude at the SPT compared to room temperature, as well as a broad spatial distribution of the local transition temperatures, thus corroborating the phase coexistence of Ni anisotropies caused by the V2O3 SPT. We show that the rearrangement of the Ni domains is due to strain induced by the oxide layers' structural domains across the SPT. Our results illustrate the use of alternative hybrid systems to manipulate magnetic domains at the nanoscale, which allows for engineering of coercive fields for novel data storage architectures.

5.
Nano Lett ; 20(11): 7852-7859, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054240

RESUMO

Vertical van der Waals (vdWs) heterostructures based on layered materials are attracting interest as a new class of quantum materials, where interfacial charge-transfer coupling can give rise to fascinating strongly correlated phenomena. Transition metal chalcogenides are a particularly exciting material family, including ferromagnetic semiconductors, multiferroics, and superconductors. Here, we report the growth of an organic-inorganic heterostructure by intercalating molecular electron donating bis(ethylenedithio)tetrathiafulvalene into (Li,Fe)OHFeSe, a layered material in which the superconducting ground state results from the intercalation of hydroxide layer. Molecular intercalation in this heterostructure induces a transformation from a paramagnetic to spin-glass-like state that is sensitive to the stoichiometry of molecular donor and an applied magnetic field. Besides, electron-donating molecules reduce the electrical resistivity in the heterostructure and modify its response to laser illumination. This hybrid heterostructure provides a promising platform to study emerging magnetic and electronic behaviors in strongly correlated layered materials.

6.
Proc Natl Acad Sci U S A ; 113(47): 13348-13353, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27830647

RESUMO

Thermal expansion, electrical resistivity, magnetization, and specific heat measurements were performed on URu2-xFexSi2 single crystals for various values of Fe concentration x in both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) regions of the phase diagram. Our results show that the paramagnetic (PM) to HO and LMAFM phase transitions are manifested differently in the thermal expansion coefficient. The uniaxial pressure derivatives of the HO/LMAFM transition temperature T0 change dramatically when crossing from the HO to the LMAFM phase. The energy gap also changes consistently when crossing the phase boundary. In addition, for Fe concentrations at xc ≈ 0.1, we observe two features in the thermal expansion upon cooling, one that appears to be associated with the transition from the PM to the HO phase and another one at lower temperature that may be due to the transition from the HO to the LMAFM phase.

7.
Nanotechnology ; 23(13): 135202, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22418779

RESUMO

We demonstrate that biological molecules such as Watson-Crick DNA base pairs can behave as biological Aviram-Ratner electrical rectifiers because of the spatial separation and weak hydrogen bonding between the nucleobases. We have performed a parallel computational implementation of the ab initio non-equilibrium Green's function (NEGF) theory to determine the electrical response of graphene--base-pair--graphene junctions. The results show an asymmetric (rectifying) current-voltage response for the cytosine-guanine base pair adsorbed on a graphene nanogap. In sharp contrast we find a symmetric response for the thymine-adenine case. We propose applying the asymmetry of the current-voltage response as a sensing criterion to the technological challenge of rapid DNA sequencing via graphene nanogaps.


Assuntos
DNA/química , Grafite , Nanoestruturas , Análise de Sequência de DNA/métodos , Pareamento de Bases , Técnicas Eletroquímicas , Modelos Moleculares , Nanoestruturas/química , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA