Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289985

RESUMO

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Assuntos
Hipertensão , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células/fisiologia , Conexinas/metabolismo , Peróxido de Hidrogênio/farmacologia , Obesidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
2.
NAR Genom Bioinform ; 5(2): lqad054, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274120

RESUMO

Chromatin accessibility assays have revolutionized the field of transcription regulation by providing single-nucleotide resolution measurements of regulatory features such as promoters and transcription factor binding sites. ATAC-seq directly measures how well the Tn5 transposase accesses chromatinized DNA. Tn5 has a complex sequence bias that is not effectively scaled with traditional bias-correction methods. We model this complex bias using a rule ensemble machine learning approach that integrates information from many input k-mers proximal to the ATAC sequence reads. We effectively characterize and correct single-nucleotide sequence biases and regional sequence biases of the Tn5 enzyme. Correction of enzymatic sequence bias is an important step in interpreting chromatin accessibility assays that aim to infer transcription factor binding and regulatory activity of elements in the genome.

3.
Genetics ; 204(2): 703-709, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27558136

RESUMO

Damage to Drosophila melanogaster imaginal discs activates a regeneration checkpoint that (1) extends larval development and (2) coordinates the regeneration of the damaged disc with the growth of undamaged discs. These two systemic responses to damage are both mediated by Dilp8, a member of the insulin/insulin-like growth factor/relaxin family of peptide hormones, which is released by regenerating imaginal discs. Growth coordination between regenerating and undamaged imaginal discs is dependent on Dilp8 activation of nitric oxide synthase (NOS) in the prothoracic gland (PG), which slows the growth of undamaged discs by limiting ecdysone synthesis. Here we demonstrate that the Drosophila relaxin receptor homolog Lgr3, a leucine-rich repeat-containing G-protein-coupled receptor, is required for Dilp8-dependent growth coordination and developmental delay during the regeneration checkpoint. Lgr3 regulates these responses to damage via distinct mechanisms in different tissues. Using tissue-specific RNA-interference disruption of Lgr3 expression, we show that Lgr3 functions in the PG upstream of NOS, and is necessary for NOS activation and growth coordination during the regeneration checkpoint. When Lgr3 is depleted from neurons, imaginal disc damage no longer produces either developmental delay or growth inhibition. To reconcile these discrete tissue requirements for Lgr3 during regenerative growth coordination, we demonstrate that Lgr3 activity in both the CNS and PG is necessary for NOS activation in the PG following damage. Together, these results identify new roles for a relaxin receptor in mediating damage signaling to regulate growth and developmental timing.


Assuntos
Proteínas de Drosophila/genética , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Ligação a RNA/genética , Receptores Acoplados a Proteínas G/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Regeneração/genética , Transdução de Sinais
4.
Genetics ; 200(4): 1219-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26081194

RESUMO

Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.


Assuntos
Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Discos Imaginais/fisiologia , Óxido Nítrico Sintase/metabolismo , Regeneração , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Ecdisona/biossíntese , Ecdisona/metabolismo , Discos Imaginais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Transdução de Sinais , Tórax/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA