Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260962

RESUMO

Piperine (PP), a natural alkaloid found in black pepper, possesses significant bioactivities. However, its use in pharmaceutical applications is hindered by low water solubility and susceptibility to UV light degradation. To overcome these challenges, we investigated the potential of ß-cyclodextrin (ßCD) and its derivatives with dimethyl (DMßCD), hydroxy-propyl (HPßCD) and sulfobutyl-ether (SBEßCD) substitutions to enhance the solubility and stability of PP. This study employed computational and experimental approaches to examine the complexation between PP and ßCDs. The results revealed the formation of two types of inclusion complexes: the P-form and M-form involving the insertion of piperidine moiety and the methylene-di-oxy-phenyl moiety, respectively. These complexes primarily rely on van der Waals interactions. Among the three derivatives, the PP/SBEßCD complex exhibited the highest stability followed by HPßCD, as attributed to maximum atom contacts and minimal solvent accessibility. Solubility studies confirmed the formation of inclusion complexes in a 1:1 ratio. Notably, the stability constant of the inclusion complex was approximately two-fold higher with SBEßCD and HPßCD compared to ßCD. The DSC thermograms provided confirmation of the formation of the inclusion complex between the host and guest. These findings highlight the potential of ßCD derivatives to effectively encapsulate PP, improving its solubility and presenting new opportunities for its pharmaceutical applications.Communicated by Ramaswamy H. Sarma.

2.
J Vet Sci ; 24(5): e67, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38031646

RESUMO

BACKGROUND: Feline immunodeficiency virus (FIV) causes an acquired immunodeficiency-like syndrome in cats. FIV is latent. No effective treatment has been developed for treatment the infected cats. The first and second generations non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, nevirapine (NVP) and efavirenz (EFV), and rilpivirine (RPV), were used to investigate the potential of NNRTIs for treatment of FIV infection. OBJECTIVE: This study aims to use experimental and in silico approaches to investigate the potential of NNRTIs, NVP, EFV, and RPV, for inhibition of FIV reverse transcriptase (FIV-RT). METHODS: The FIV-RT and human immunodeficiency virus reverse transcriptase (HIV-RT) were expressed and purified using chromatography approaches. The purified proteins were used to determine the IC50 values with NVP, EFV, and RPV. Surface plasmon resonance (SPR) analysis was used to calculate the binding affinities of NNRTIs to HIV-RT and FIV-RT. The molecular docking and molecular dynamic simulations were used to demonstrate the mechanism of FIV-RT and HIV-RT with first and second generation NNRTI complexes. RESULTS: The IC50 values of NNRTIs NVP, EFV, and RPV against FIV-RT were in comparable ranges to HIV-RT. The SPR analysis showed that NVP, EFV, and RPV could bind to both enzymes. Computational calculation also supports that these NNRTIs can bind with both FIV-RT and HIV-RT. CONCLUSIONS: Our results suggest the first and second generation NNRTIs (NVP, EFV, and RPV) could inhibit both FIV-RT and HIV-RT.


Assuntos
Fármacos Anti-HIV , Doenças do Gato , Infecções por HIV , HIV-1 , Gatos , Animais , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Simulação de Acoplamento Molecular , HIV-1/metabolismo , Rilpivirina/farmacologia , Rilpivirina/uso terapêutico , Nevirapina/farmacologia , Nevirapina/uso terapêutico , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/farmacologia , Transcriptase Reversa do HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/veterinária , Doenças do Gato/tratamento farmacológico
3.
PLoS One ; 18(10): e0293263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37874836

RESUMO

The COVID-19 pandemic has created an urgent need for effective therapeutic and diagnostic strategies to manage the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the emergence of numerous variants of concern (VOCs) has made it challenging to develop targeted therapies that are broadly specific in neutralizing the virus. In this study, we aimed to develop neutralizing nanobodies (Nbs) using computational techniques that can effectively neutralize the receptor-binding domain (RBD) of SARS-CoV-2 VOCs. We evaluated the performance of different protein-protein docking programs and identified HDOCK as the most suitable program for Nb/RBD docking with high accuracy. Using this approach, we designed 14 novel Nbs with high binding affinity to the VOC RBDs. The Nbs were engineered with mutated amino acids that interacted with key amino acids of the RBDs, resulting in higher binding affinity than human angiotensin-converting enzyme 2 (ACE2) and other viral RBDs or haemagglutinins (HAs). The successful development of these Nbs demonstrates the potential of molecular modeling as a low-cost and time-efficient method for engineering effective Nbs against SARS-CoV-2. The engineered Nbs have the potential to be employed in RBD-neutralizing assays, facilitating the identification of novel treatment, prevention, and diagnostic strategies against SARS-CoV-2.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Anticorpos Antivirais/metabolismo , Pandemias , Ligação Proteica , Aminoácidos/metabolismo , Glicoproteína da Espícula de Coronavírus/química
4.
J Mol Graph Model ; 125: 108619, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666055

RESUMO

Structures and UV-vis absorption spectra of the host-guest interaction of the methoxy cinnamic acid (MCA) derivatives and cyclodextrins (CDs) were performed by using the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. All geometries of MCA derivatives (4-MCA, 245-MCA, 246-MCA), three types of CD (αCD, ßCD, γCD), and five host-guest inclusion complexes between MCA and CD consisting of 4-MCA/αCD (1), 4-MCA/ßCD (2), 245-MCA/ßCD (3), 246-MCA/ßCD (4), and 246-MCA/γCD (5) were fully optimized by using the M06-2X/6-31G (d,p) levels of theory. Two orientations (A and B) of the MCA guest molecule were considered. Upon examining the optimized geometry, five complexes of the methoxy cinnamic acid molecules are located inside the cavity of CD. Orientation B was more stable than orientation A because of the stronger intermolecular hydrogen bonds between the hydroxyl group of CD and the carboxylic group of MCA. The results indicated that the intermolecular hydrogen bond is mainly the driving force of formation between methoxy cinnamic acid and cyclodextrins. To reveal the host-guest interaction that is relevant to UV-filter compounds, the UV-vis absorption spectra were performed using TD-DFT calculations. The obtained results confirmed that orientation B is the most stable orientation and can absorb in both UVB and UVA regions which is similar to the parent MCA. Therefore, this knowledge will bring to understand the host-guest interaction between methoxy cinnamic acid and cyclodextrin complexes. The theoretical results are expected to provide valuable information for improving the stability of further UV-filter compounds.


Assuntos
Ciclodextrinas , Teoria da Densidade Funcional , Hidrogênio , Ligação de Hidrogênio
5.
RSC Adv ; 13(39): 27244-27254, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701271

RESUMO

Sorafenib (SOR) is an oral multikinase inhibitor that effectively hampers the growth and spread of cancer cells by targeting angiogenesis and proliferation. However, SOR tablets (Nexavar) have limited oral bioavailability, ranging from 38% to 49%, due to their low water solubility. To address this issue, cyclodextrins (CDs), widely used to enhance the solubility and stability of lipophilic drugs by encapsulating them within their molecular structure, were considered in this study. We focused on ß-cyclodextrin (ßCD) and its derivatives, including hydroxypropyl-ß-cyclodextrin (HPßCD), dimethyl-ß-cyclodextrin (DMßCD), sulfobutylether-ß-cyclodextrin (SBEßCD), and compared them with γ-cyclodextrin (γCD) for generating inclusion complexes with SOR. The 200 ns molecular dynamics simulations revealed that SOR could form inclusion complexes with all CDs in two possible orientations: pyridine group insertion (P-form) and chlorobenzotrifluoride group insertion (C-form), primarily driven by van der Waals interactions. Among the four ßCD derivatives studied, SOR exhibited the highest number of atom contacts with SBEßCD and demonstrated the lowest solvent accessibility within the hydrophobic cavity of SBEßCD. These findings correlated with the highest binding affinity of SOR/SBEßCD complex determined by SIE, MM/GBSA, and MM/PBSA methods. Experimental results further supported our computational predictions, in which SBEßCD exhibited a stability constant of 940 M-1 at 25 °C, surpassing ßCD's stability constant of 210 M-1. Taken together, our results suggest that the modified CDs, particularly SBEßCD, hold promising potential as an efficient molecular encapsulating agent for SOR, offering improved solubility and stability for this lipophilic drug.

6.
J Chem Inf Model ; 63(16): 5244-5258, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37581276

RESUMO

3CLpro is a viable target for developing antiviral therapies against the coronavirus. With the urgent need to find new possible inhibitors, a structure-based virtual screening approach was developed. This study recognized 75 pharmacologically bioactive compounds from our in-house library of 1052 natural product-based compounds that satisfied drug-likeness criteria and exhibited good bioavailability and membrane permeability. Among these compounds, three promising sulfonamide chalcones were identified by combined theoretical and experimental approaches, with SWC423 being the most suitable representative compound due to its competitive inhibition and low cytotoxicity in Vero E6 cells (EC50 = 0.89 ± 0.32 µM; CC50 = 25.54 ± 1.38 µM; SI = 28.70). The binding and stability of SWC423 in the 3CLpro active site were investigated through all-atom molecular dynamics simulation and fragment molecular orbital calculation, indicating its potential as a 3CLpro inhibitor for further SARS-CoV-2 therapeutic research. These findings suggested that inhibiting 3CLpro with a sulfonamide chalcone such as SWC423 may pave the effective way for developing COVID-19 treatments.


Assuntos
COVID-19 , Chalconas , Antivirais/farmacologia , Chalconas/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Células Vero , Chlorocebus aethiops , Animais
7.
ACS Omega ; 8(9): 8366-8376, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910942

RESUMO

The polymyxin colistin is a last line antibiotic for extensively resistant Gram-negative bacteria. Colistin binding to lipid A disrupts the Gram-negative outer membrane, but mobile colistin resistance (mcr) gene family members confer resistance by catalyzing phosphoethanolamine (PEA) transfer onto lipid A, neutralizing its negative charge to reduce colistin interactions. Multiple mcr isoforms have been identified in clinical and environmental isolates, with mcr-1 being the most widespread and mcr-3 being common in South and East Asia. Preliminary screening revealed that treatment with pyrazolones significantly reduced mcr-1, but not mcr-3, mediated colistin resistance. Molecular dynamics (MD) simulations of the catalytic domains of MCR-1 and a homology model of MCR-3, in different protonation states of active site residues H395/H380 and H478/H463, indicate that the MCR-1 active site has greater water accessibility than MCR-3, but that this is less influenced by changes in protonation. MD-optimized structures of MCR-1 and MCR-3 were used in virtual screening of 20 pyrazolone derivatives. Docking of these into the MCR-1/MCR-3 active sites identifies common residues likely to be involved in protein-ligand interactions, specifically the catalytic threonine (MCR-1 T285, MCR-3 T277) site of PEA addition, as well as differential interactions with adjacent amino acids. Minimal inhibitory concentration assays showed that the pyrazolone with the lowest predicted binding energy (ST3f) restores colistin susceptibility of mcr-1, but not mcr-3, expressing Escherichia coli. Thus, simulations indicate differences in the active site structure between MCR-1 and MCR-3 that may give rise to differences in pyrazolone binding and so relate to differential effects upon producer E. coli. This work identifies pyrazolones as able to restore colistin susceptibility of mcr-1-producing bacteria, laying the foundation for further investigations of their activity as phosphoethanolamine transferase inhibitors as well as of their differential activity toward mcr isoforms.

8.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901859

RESUMO

α-tocopherol is the physiologically most active form of vitamin E, with numerous biological activities, such as significant antioxidant activity, anticancer capabilities, and anti-aging properties. However, its low water solubility has limited its potential use in the food, cosmetic, and pharmaceutical industries. One possible strategy for addressing this issue is the use of a supramolecular complex with large-ring cyclodextrins (LR-CDs). In this study, the phase solubility of the CD26/α-tocopherol complex was investigated to assess the possible ratios between host and guest in the solution phase. Next, the host-guest association of the CD26/α-tocopherol complex at different ratios of 1:2, 1:4, 1:6, 2:1, 4:1, and 6:1 was studied by all-atom molecular dynamics (MD) simulations. At 1:2 ratio, two α-tocopherol units interact spontaneously with CD26, forming an inclusion complex, as supported by the experimental data. In the 2:1 ratio, a single α-tocopherol unit was encapsulated by two CD26 molecules. In comparison, increasing the number of α-tocopherol or CD26 molecules above two led to self-aggregation and consequently limited the solubility of α-tocopherol. The computational and experimental results indicate that a 1:2 ratio could be the most suitable stoichiometry to use in the CD26/α-tocopherol complex to improve α-tocopherol solubility and stability in inclusion complex formation.


Assuntos
Ciclodextrinas , alfa-Tocoferol , Dipeptidil Peptidase 4 , Antioxidantes , Solubilidade
9.
ACS Omega ; 7(37): 33548-33559, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157769

RESUMO

Janus kinases (JAKs) are nonreceptor protein tyrosine kinases that play a role in a broad range of cell signaling. JAK2 and JAK3 have been involved in the pathogenesis of common lymphoid-derived diseases and leukemia cancer. Thus, inhibition of both JAK2 and JAK3 can be a potent strategy to reduce the risk of these diseases. In the present study, the pharmacophore models built based on the commercial drug tofacitinib and the JAK2/3 proteins derived from molecular dynamics (MD) trajectories were employed to search for a dual potent JAK2/3 inhibitor by a pharmacophore-based virtual screening of 54 synthesized pyrazolone derivatives from an in-house data set. Twelve selected compounds from the virtual screening procedure were then tested for their inhibitory potency against both JAKs in the kinase assay. The in vitro kinase inhibition experiment indicated that compounds 3h, TK4g, and TK4b can inhibit both JAKs in the low nanomolar range. Among them, the compound TK4g showed the highest protein kinase inhibition with the half-maximal inhibitory concentration (IC50) value of 12.61 nM for JAK2 and 15.80 nM for JAK3. From the MD simulations study, it could be found that the sulfonamide group of TK4g can form hydrogen bonds in the hinge region at residues E930 and L932 of JAK2 and E903 and L905 of JAK3, while van der Waals interaction also plays a dominant role in ligand binding. Altogether, TK4g, found by virtual screening and biological tests, could serve as a novel therapeutical lead candidate.

10.
Sci Rep ; 12(1): 12137, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840700

RESUMO

The Musashi (MSI) family of RNA-binding proteins, comprising the two homologs Musashi-1 (MSI1) and Musashi-2 (MSI2), typically regulates translation and is involved in cell proliferation and tumorigenesis. MSI proteins contain two ribonucleoprotein-like RNA-binding domains, RBD1 and RBD2, that bind single-stranded RNA motifs with a central UAG trinucleotide with high affinity and specificity. The finding that MSI also promotes the replication of Zika virus, a neurotropic Flavivirus, has triggered further investigations of the biochemical principles behind MSI-RNA interactions. However, a detailed molecular understanding of the specificity of MSI RBD1/2 interaction with RNA is still missing. Here, we performed computational studies of MSI1-RNA association complexes, investigating different RNA pentamer motifs using molecular dynamics simulations with binding free energy calculations based on the solvated interaction energy method. Simulations with Alphafold2 suggest that predicted MSI protein structures are highly similar to experimentally determined structures. The binding free energies show that two out of four RNA pentamers exhibit a considerably higher binding affinity to MSI1 RBD1 and RBD2, respectively. The obtained structural information on MSI1 RBD1 and RBD2 will be useful for a detailed functional and mechanistic understanding of this type of RNA-protein interactions.


Assuntos
Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Zika virus/genética , Infecção por Zika virus/metabolismo
11.
PLoS One ; 17(6): e0269563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771802

RESUMO

SARS-CoV-2 causes the current global pandemic coronavirus disease 2019. Widely-available effective drugs could be a critical factor in halting the pandemic. The main protease (3CLpro) plays a vital role in viral replication; therefore, it is of great interest to find inhibitors for this enzyme. We applied the combination of virtual screening based on molecular docking derived from the crystal structure of the peptidomimetic inhibitors (N3, 13b, and 11a), and experimental verification revealed FDA-approved drugs that could inhibit the 3CLpro of SARS-CoV-2. Three drugs were selected using the binding energy criteria and subsequently performed the 3CLpro inhibition by enzyme-based assay. In addition, six common drugs were also chosen to study the 3CLpro inhibition. Among these compounds, lapatinib showed high efficiency of 3CLpro inhibition (IC50 value of 35 ± 1 µM and Ki of 23 ± 1 µM). The binding behavior of lapatinib against 3CLpro was elucidated by molecular dynamics simulations. This drug could well bind with 3CLpro residues in the five subsites S1', S1, S2, S3, and S4. Moreover, lapatinib's key chemical pharmacophore features toward SAR-CoV-2 3CLpro shared important HBD and HBA with potent peptidomimetic inhibitors. The rational design of lapatinib was subsequently carried out using the obtained results. Our discovery provides an effective repurposed drug and its newly designed analogs to inhibit SARS-CoV-2 3CLpro.


Assuntos
Tratamento Farmacológico da COVID-19 , Peptidomiméticos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Humanos , Lapatinib/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
12.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562757

RESUMO

The effect of microsolvation on excited-state proton transfer (ESPT) reaction of 3-hydroxyflavone (3HF) and its inclusion complex with γ-cyclodextrin (γ-CD) was studied using computational approaches. From molecular dynamics simulations, two possible inclusion complexes formed by the chromone ring (C-ring, Form I) and the phenyl ring (P-ring, Form II) of 3HF insertion to γ-CD were observed. Form II is likely more stable because of lower fluctuation of 3HF inside the hydrophobic cavity and lower water accessibility to the encapsulated 3HF. Next, the conformation analysis of these models in the ground (S0) and the first excited (S1) states was carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, to reveal the photophysical properties of 3HF influenced by the γ-CD. The results show that the intermolecular hydrogen bonding (interHB) between 3HF and γ-CD, and intramolecular hydrogen bonding (intraHB) within 3HF are strengthened in the S1 state confirmed by the shorter interHB and intraHB distances and the red-shift of O-H vibrational modes involving in the ESPT process. The simulated absorption and emission spectra are in good agreement with the experimental data. Significantly, in the S1 state, the keto form of 3HF is stabilized by γ-CD, explaining the increased quantum yield of keto emission of 3HF when complexing with γ-CD in the experiment. In the other word, ESPT of 3HF is more favorable in the γ-CD hydrophobic cavity than in aqueous solution.


Assuntos
Flavonoides/química , Prótons , Solventes/química , Água/química , gama-Ciclodextrinas/química , Modelos Moleculares , Conformação Molecular
13.
J Biomol Struct Dyn ; 39(7): 2502-2511, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32308149

RESUMO

Hepatitis B virus (HBV), a small enveloped DNA virus, attacks the human liver causing both acute and chronic diseases. Current therapeutic drugs use the nucleos(t)ide analogues (NAs) as a competitive inhibitor against HBV reverse transcriptase (HBV-RT), an essential enzyme pivotally involved in viral replication. Unfortunately, this treatment still causes the development of resistant variants of HBV against NAs. As HBV-RT is homologous to the human immunodeficiency virus reverse transcriptase (HIV-RT), it is reasonable to treat HBV-RT with anti-HIV drugs. In the present study, we aimed to investigate the structural dynamics and susceptibility of the known anti-HIV drugs (stavudine [d4T], didanosine [DDI], and zidovudine [ZDV]) against HBV-RT enzyme in comparison to the anti-HBV drug lamivudine (3TC) and deoxythymidine triphosphate (dTTP) substrate using several computational approaches. The ΔGbindresidue calculations revealed that seven polar residues (K32, R41, D83, S85, D205, N236, and K239) and three hydrophobic residues (A86, A87, and F88) of HBV-RT as well as the adjacent DNA strands play an important role in the ligand binding. In addition, the H-bond pattern of d4T is similar to that of 3TC, especially at the residues A86 and A87. Such interactions promote the favorable conformation of ligand in the HBV-RT binding pocket, while the several different conformations of ligand are found in the unbound state. The predicted binding free energy results based on QM/MM-GBSA and MM/GB(PB)SA methods suggested that the susceptibility towards HBV-RT of d4T and ZDV is higher than that of 3TC and dTTP. Altogether, this work sheds light on the potentiality of d4T and ZDV as a promising drug for HBV-infected patients harboring 3TC resistance.Communicated by Ramaswamy H. Sarma.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Estavudina/uso terapêutico , Zidovudina
14.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485931

RESUMO

α-Mangostin (MGS) exhibits various pharmacological activities, including antioxidant, anticancer, antibacterial, and anti-inflammatory properties. However, its low water solubility is the major obstacle for its use in pharmaceutical applications. To increase the water solubility of MGS, complex formation with beta-cyclodextrins (ßCDs), particularly with the native ßCD and/or its derivative 2,6-dimethyl-ß-CD (DMßCD) is a promising technique. Although there have been several reports on the adsorption of ßCDs on the lipid bilayer, the release of the MGS/ßCDs inclusion complex through the biological membrane remains unclear. In this present study, the release the MGS from the two different ßCDs (ßCD and DMßCD) across the lipid bilayer was investigated. Firstly, the adsorption of the free MGS, free ßCDs, and inclusion complex formation was studied by conventional molecular dynamics simulation. The MGS in complex with those two ßCDs was able to spontaneously release free MGS into the inner membrane. However, both MGS and DMßCD molecules potentially permeated into the deeper region of the interior membrane, whereas ßCD only adsorbed at the outer membrane surface. The interaction between secondary rim of ßCD and the 1-palmitoeyl-2-oleoyl-glycero-3-phosphocholine (POPC) phosphate groups showed the highest number of hydrogen bonds (up to 14) corresponding to the favorable location of ßCD on the POPC membrane. Additionally, the findings suggested that electrostatic energy was the main driving force for ßCD adsorption on the POPC membrane, while van der Waals interactions played a predominant role in DMßCD adsorption. The release profile of MGS from the ßCDs pocket across the lipid bilayer exhibited two energy minima along the reaction coordinate associated with the permeation of the MGS molecule into the deeper region of the POPC membrane.


Assuntos
Desenho de Fármacos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Xantonas/administração & dosagem , Xantonas/química , beta-Ciclodextrinas/análise , Adsorção , Portadores de Fármacos , Ligação de Hidrogênio , Lipídeos/química , Permeabilidade , Fosfatidilcolinas/química , Solubilidade , Eletricidade Estática
15.
ACS Omega ; 5(1): 369-377, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956784

RESUMO

Janus kinases (JAKs) are enzymes involved in signaling pathways that affect hematopoiesis and immune cell functions. JAK1, JAK2, and JAK3 play different roles in numerous diseases of the immune system and have also been considered as potential targets for cancer therapy. In the present study, the susceptibility of the oral JAK inhibitor tofacitinib against these three JAKs was elucidated using the 500-ns molecular dynamics (MD) simulations and free energy calculations based on MM-PB(GB)SA, QM/MM-GBSA (PM3 and SCC-DFTB), and SIE methods. The obtained results revealed that tofacitinib could interact with all JAKs at the ATP-binding site via electrostatic attraction, hydrogen bond formation, and in particular van der Waals interaction. The conserved glutamate and leucine residues (E957 and L959 of JAK1, E930 and L932 of JAK2, and E903 and L905 of JAK3) located in the hinge region stabilized tofacitinib binding through strongly formed hydrogen bonds. Complexation with the incoming tofacitinib led to a closed conformation of the ATP-binding site and a decreased protein fluctuation at the glycine loop of the JAK protein. The binding affinities of tofacitinib/JAKs were ranked in the order of JAK3 > JAK2 ∼ JAK1, which are in line with the reported experimental data.

16.
Polymers (Basel) ; 11(1)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30960130

RESUMO

2-Hydroxypropyl-ß-cyclodextrin (HPßCD) has unique properties to enhance the stability and the solubility of low water-soluble compounds by inclusion complexation. An understanding of the structural properties of HPßCD and its derivatives, based on the number of 2-hydroxypropyl (HP) substituents at the α-d-glucopyranose subunits is rather important. In this work, replica exchange molecular dynamics simulations were performed to investigate the conformational changes of single- and double-sided HP-substitution, called 6-HPßCDs and 2,6-HPßCDs, respectively. The results show that the glucose subunits in both 6-HPßCDs and 2,6-HPßCDs have a lower chance of flipping than in ßCD. Also, HP groups occasionally block the hydrophobic cavity of HPßCDs, thus hindering drug inclusion. We found that HPßCDs with a high number of HP-substitutions are more likely to be blocked, while HPßCDs with double-sided HP-substitutions have an even higher probability of being blocked. Overall, 6-HPßCDs with three and four HP-substitutions are highlighted as the most suitable structures for guest encapsulation, based on our conformational analyses, such as structural distortion, the radius of gyration, circularity, and cavity self-closure of the HPßCDs.

17.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897725

RESUMO

Targeted cancer therapy has become a high potential cancer treatment. Epidermal growth factor receptor (EGFR), which plays an important role in cell signaling, enhanced cell survival and proliferation, has been suggested as molecular target for the development of novel cancer therapeutics. In this study, a series of chalcone derivatives was screened by in vitro cytotoxicity against the wild type (A431 and A549) and mutant EGFR (H1975 and H1650) cancer cell lines, and, subsequently, tested for EGFR-tyrosine kinase (TK) inhibition. From the experimental screening, all chalcones seemed to be more active against the A431 than the A549 cell line, with chalcones 1c, 2a, 3e, 4e, and 4t showing a more than 50% inhibitory activity against the EGFR-TK activity and a high cytotoxicity with IC50 values of < 10 µM against A431 cells. Moreover, these five chalcones showed more potent on H1975 (T790M/L858R mutation) than H1650 (exon 19 deletion E746-A750) cell lines. Only three chalcones (1c, 2a and 3e) had an inhibitory activity against EGFR-TK with a relative inhibition percentage that was close to the approved drug, erlotinib. Molecular dynamics studies on their complexes with EGFR-TK domain in aqueous solution affirmed that they were well-occupied within the ATP binding site and strongly interacted with seven hydrophobic residues, including the important hinge region residue M793. From the above information, as well as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, all three chalcones could serve as lead compounds for the development of EGFR-TK inhibitors.


Assuntos
Chalcona/análogos & derivados , Chalcona/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Mutação/genética
18.
Sci Rep ; 9(1): 745, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679605

RESUMO

The association of systemic sclerosis with anti-Topoisomerase 1 antibody (ATASSc) with specific alleles of human leukocyte antigen (HLA)-DR has been observed among various ethnics. The anti-Topoisomerase 1 antibody is a common autoantibody in SSc with diffuse cutaneous scleroderma, which is one of the clinical subtypes of SSc. On the other hand, an immunodominant peptide of topoisomerase 1 (Top1) self-protein (residues 349-368) was reported to have strong association with ATASSc. In this study, molecular dynamics simulation was performed on the complexes of Top1 peptide with various HLA-DR subtypes divided into ATASSc-associated alleles (HLA-DRB1*08:02, HLA-DRB1*11:01 and HLA-DRB1*11:04), suspected allele (HLA-DRB5*01:02), and non-associated allele (HLA-DRB1*01:01). The unique interaction for each system was compared to the others in terms of dynamical behaviors, binding free energies and solvation effects. Our results showed that three HLA-DR/Top1 complexes of ATASSc association mostly exhibited high protein stability and increased binding efficiency without solvent interruption, in contrast to non-association. The suspected case (HLA-DRB5*01:02) binds Top1 as strongly as the ATASSc association case, which implied a highly possible risk for ATASSc development. This finding might support ATASSc development mechanism leading to a guideline for the treatment and avoidance of pathogens like Top1 self-peptide risk for ATASSc.


Assuntos
DNA Topoisomerases Tipo I/genética , Cadeias HLA-DRB1/química , Cadeias HLA-DRB5/química , Escleroderma Sistêmico/genética , Alelos , Anticorpos Anti-Idiotípicos/química , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/imunologia , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/imunologia , Epitopos/genética , Epitopos/imunologia , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Cadeias HLA-DRB5/genética , Cadeias HLA-DRB5/imunologia , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica/genética , Estabilidade Proteica , Fatores de Risco , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia
19.
J Enzyme Inhib Med Chem ; 34(1): 134-143, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30394113

RESUMO

Targeted cancer therapy has become one of the high potential cancer treatments. Human topoisomerase II (hTopoII), which catalyzes the cleavage and rejoining of double-stranded DNA, is an important molecular target for the development of novel cancer therapeutics. In order to diversify the pharmacological activity of chalcones and to extend the scaffold of topoisomerase inhibitors, a series of chalcones was screened against hTopoIIα by computational techniques, and subsequently tested for their in vitro cytotoxicity. From the experimental IC50 values, chalcone 3d showed a high cytotoxicity with IC50 values of 10.8, 3.2 and 21.1 µM against the HT-1376, HeLa and MCF-7 cancer-derived cell lines, respectively, and also exhibited an inhibitory activity against hTopoIIα-ATPase that was better than the known inhibitor, salvicine. The observed ligand-protein interactions from a molecular dynamics study affirmed that 3d strongly interacts with the ATP-binding pocket residues. Altogether, the newly synthesised chalcone 3d has a high potential to serve as a lead compound for topoisomerase inhibitors.


Assuntos
Chalconas/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Desenho de Fármacos , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Relação Estrutura-Atividade
20.
Sci Pharm ; 86(1)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385698

RESUMO

Pinostrobin (PNS) belongs to the flavanone subclass of flavonoids which shows several biological activities such as anti-inflammatory, anti-cancerogenic, anti-viral and anti-oxidative effects. Similar to other flavonoids, PNS has a quite low water solubility. The purpose of this work is to improve the solubility and the biological activities of PNS by forming inclusion complexes with ß-cyclodextrin (ßCD) and its derivatives, heptakis-(2,6-di-O-methyl)-ß-cyclodextrin (2,6-DMßCD) and (2-hydroxypropyl)-ß-cyclodextrin (HPßCD). The AL-type diagram of the phase solubility studies of PNS exhibited the formed inclusion complexes with the 1:1 molar ratio. Inclusion complexes were prepared by the freeze-drying method and were characterized by differential scanning calorimetry (DSC). Two-dimensional nuclear magnetic resonance (2D-NMR) and steered molecular dynamics (SMD) simulation revealed two different binding modes of PNS, i.e., its phenyl- (P-PNS) and chromone- (C-PNS) rings preferably inserted into the cavity of ßCD derivatives whilst only one orientation of PNS, where the C-PNS ring is inside the cavity, was detected in the case of the parental ßCD. All PNS/ßCDs complexes had a higher dissolution rate than free PNS. Both PNS and its complexes significantly exerted a lowering effect on the IL-6 secretion in LPS-stimulated macrophages and showed a moderate cytotoxic effect against MCF-7 and HeLa cancer cell lines in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA