Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 506: 153835, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857863

RESUMO

Next Generation Risk Assessment (NGRA) is an exposure-led approach to safety assessment that uses New Approach Methodologies (NAMs). Application of NGRA has been largely restricted to assessments of consumer use of cosmetics and is not currently implemented in occupational safety assessments, e.g. under EU REACH. By contrast, a large proportion of regulatory worker safety assessments are underpinned by toxicological studies using experimental animals. Consequently, occupational safety assessment represents an area that would benefit from increasing application of NGRA to safety decision making. Here, a workflow for conducting NGRA under an occupational safety context was developed, which is illustrated with a case study chemical; sodium 2-hydroxyethane sulphonate (sodium isethionate or SI). Exposures were estimated using a standard occupational exposure model following a comprehensive life cycle assessment of SI and considering factory-specific data. Outputs of this model were then used to estimate internal exposures using a Physiologically Based Kinetic (PBK) model, which was constructed with SI specific Absorption, Distribution, Metabolism and Excretion (ADME) data. PBK modelling indicated a worst-case plasma maximum concentration (Cmax) of 0.8 µM across the SI life cycle. SI bioactivity was assessed in a battery of NAMs relevant to systemic, reproductive, and developmental toxicity; a cell stress panel, high throughput transcriptomics in three cell lines (HepG2, HepaRG and MCF-7 cells), pharmacological profiling and specific assays relating to developmental toxicity (Reprotracker and devTOX quickPredict). Points of Departure (PoDs) for SI ranged from 104 to 5044 µM. Cmax values obtained from PBK modelling of occupational exposures to SI were compared with PoDs from the bioactivity assays to derive Bioactivity Exposure Ratios (BERs) which demonstrated the safety for workers exposed to SI under current levels of factory specific risk management. In summary, the tiered and iterative workflow developed here represents an opportunity for integrating non animal approaches for a large subset of substances for which systemic worker safety assessment is required. Such an approach could be followed to ensure that animal testing is only conducted as a "last resort" e.g. under EU REACH.


Assuntos
Exposição Ocupacional , Medição de Risco/métodos , Humanos , Exposição Ocupacional/normas , Exposição Ocupacional/efeitos adversos , Segurança Química/métodos , Animais , Saúde Ocupacional , Modelos Biológicos , Testes de Toxicidade/métodos , Ácidos Sulfônicos/toxicidade
2.
Toxicol Sci ; 183(2): 302-318, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34387693

RESUMO

A critical aspect of toxicity evaluation is developmental and reproductive toxicity (DART) testing. Traditionally, DART testing has been conducted in vivo in mammalian model systems. New legislation aimed at reducing animal use and the prohibitive costs associated with DART testing, together with a need to understand the genetic pathways underlying developmental toxicity means there is a growing demand for alternative model systems for toxicity evaluation. Here we explore the potential of the eukaryotic social amoeba Dictyostelium discoideum, which is already widely used as a simple model system for cell and developmental biology, as a potential nonanimal model for DART testing. We developed assays for high-throughput screening of toxicity during D. discoideum growth and development. This allowed the toxicity of a broad range of test compounds to be characterized, which revealed that D. discoideum can broadly predict mammalian toxicity. In addition, we show that this system can be used to perform functional genomic screens to compare the molecular modes of action of different compounds. For example, genome-wide screens for mutations that affect lithium and valproic acid toxicity allowed common and unique biological targets and molecular processes mediating their toxicity to be identified. These studies illustrate that D. discoideum could represent a predictive nonanimal model for DART testing due to its amenability to high-throughput approaches and molecular genetic tractability.


Assuntos
Dictyostelium , Animais , Dictyostelium/genética , Mutação , Reprodução , Testes de Toxicidade , Ácido Valproico/toxicidade
3.
PLoS Comput Biol ; 17(2): e1008562, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617524

RESUMO

Effective regulation of the sonic hedgehog (Shh) signalling pathway is essential for normal development in a wide variety of species. Correct Shh signalling requires the formation of Shh aggregates on the surface of producing cells. Shh aggregates subsequently diffuse away and are recognised in receiving cells located elsewhere in the developing embryo. Various mechanisms have been postulated regarding how these aggregates form and what their precise role is in the overall signalling process. To understand the role of these mechanisms in the overall signalling process, we formulate and analyse a mathematical model of Shh aggregation using nonlinear ordinary differential equations. We consider Shh aggregate formation to comprise of multimerisation, association with heparan sulfate proteoglycans (HSPG) and binding with lipoproteins. We show that the size distribution of the Shh aggregates formed on the producing cell surface resembles an exponential distribution, a result in agreement with experimental data. A detailed sensitivity analysis of our model reveals that this exponential distribution is robust to parameter changes, and subsequently, also to variations in the processes by which Shh is recruited by HSPGs and lipoproteins. The work demonstrates the time taken for different sized Shh aggregates to form and the important role this likely plays in Shh diffusion.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Lipoproteínas/química , Transdução de Sinais , Algoritmos , Membrana Celular/metabolismo , Simulação por Computador , Difusão , Proteínas Hedgehog/metabolismo , Humanos , Modelos Teóricos , Ligação Proteica
4.
Leuk Res ; 46: 10-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27107743

RESUMO

Leukemia arises due to the dysregulated proliferation of hematopoietic progenitor cells. Errors in the multi-step commitment process result in excessive numbers of immature lymphocytes, causing malignant disease. Genes involved in the differentiation of lymphocytes are often associated with leukemia. One such gene, Zfp521, has been found to cause B-cell leukemia in mice when over-expressed. The role of Zfp521 in B-cell differentiation, and the mechanisms by which it leads to leukemic transformation, are unclear. In this study we report that Zfp521 knockdown causes apoptosis in a B-cell culture system and promotes down-regulation of genes acting at late stages of B-cell differentiation. We identify Pax5 and cyclin D1 as Zfp521 target genes, and suggest that excessive B-cell proliferation observed in mice with retroviral insertions near the Zfp521 gene is due to an up-regulation of cyclin D1 in B-cells. Overall, these results suggest links between dysregulated Zfp521 and B-cell survival.


Assuntos
Linfócitos B/patologia , Ciclina D1/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição PAX5/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos
5.
PLoS One ; 9(9): e107041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25269082

RESUMO

The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.


Assuntos
Átrios do Coração/metabolismo , Cardiopatias Congênitas/genética , Receptor ErbB-2/genética , Potenciais de Ação , Animais , Função Atrial , Átrios do Coração/embriologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA