RESUMO
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.
Assuntos
Região CA1 Hipocampal , Gerbillinae , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Sefarose/análogos & derivados , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Polissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismoRESUMO
Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.
Assuntos
Isquemia Encefálica , Glucosídeos Iridoides , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/metabolismo , Gliose , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismoRESUMO
Aucubin is an iridoid glycoside that displays various pharmacological actions including antioxidant activity. However, there are few reports available on the neuroprotective effects of aucubin against ischemic brain injury. Thus, the aim of this study was to investigate whether aucubin protected against damage to hippocampal function induced by forebrain ischemia-reperfusion injury (fIRI) in gerbils, and to examine whether aucubin produced neuroprotection in the hippocampus against fIRI and to explore its mechanisms by histopathology, immunohistochemistry, and Western analysis. Gerbils were given intraperitoneal injections of aucubin at doses of 1, 5, and 10 mg/kg, respectively, once a day for seven days before fIRI. As assessed by the passive avoidance test, short-term memory function following fIRI significantly declined, whereas the decline in short-term memory function due to fIRI was ameliorated by pretreatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin. Most of the pyramidal cells (principal cells) of the hippocampus died in the Cornu Ammonis 1 (CA1) area four days after fIRI. Treatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin protected the pyramidal cells from IRI. The treatment with 10 mg/kg of aucubin significantly reduced IRI-induced superoxide anion production, oxidative DNA damage, and lipid peroxidation in the CA1 pyramidal cells. In addition, the aucubin treatment significantly increased the expressions of superoxide dismutases (SOD1 and SOD2) in the pyramidal cells before and after fIRI. Furthermore, the aucubin treatment significantly enhanced the protein expression levels of neurotrophic factors, such as brain-derived neurotrophic factor and insulin-like growth factor-I, in the hippocampal CA1 area before and after IRI. Collectively, in this experiment, pretreatment with aucubin protected CA1 pyramidal cells from forebrain IRI by attenuating oxidative stress and increasing neurotrophic factors. Thus, pretreatment with aucubin can be a promising candidate for preventing brain IRI.
RESUMO
Multi-organ dysfunction following cardiac arrest is associated with poor outcome as well as high mortality. The kidney, one of major organs in the body, is susceptible to ischemia and reperfusion; however, there are few studies on renal ischemia and reperfusion injury (IRI) following the return of spontaneous circulation (ROSC) after cardiac arrest. Risperidone, an atypical antipsychotic drug, has been discovered to have some beneficial effects beyond its original effectiveness. Therefore, the aim of the present study was to investigate possible therapeutic effects of risperidone on renal IRI following cardiac arrest. Rats were subjected to cardiac arrest induced by asphyxia for five minutes followed by ROSC. When serum biochemical analyses were examined, the levels of serum blood urea nitrogen, creatinine, and lactate dehydrogenase were dramatically increased after cardiac arrest, but they were significantly reduced by risperidone administration. Histopathology was examined using hematoxylin and eosin staining. Histopathological injury induced by cardiac arrest was apparently attenuated by risperidone administration. Furthermore, alterations in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and anti-inflammatory cytokines (interleukin-4 and interleukin-13) were examined by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokine immunoreactivities were gradually and markedly increased and decreased, respectively, in the kidneys following cardiac arrest; however, risperidone administration after cardiac arrest significantly attenuated the increased pro-inflammatory cytokine immunoreactivities and the decreased anti-inflammatory cytokine immunoreactivities. Collectively, our current results revealed that, in rats, risperidone administration after cardiac arrest protected kidneys from IRI induced by cardiac arrest and ROSC through anti-inflammatory effects.
RESUMO
BACKGROUND: A gerbil model of ischemia and reperfusion (IR) injury in the forebrain has been developed for studies on mechanisms, prevention and therapeutic strategies of IR injury in the forebrain. Pycnogenol® (PYC), a standardized extract of French maritime pine tree (Pinus pinaster Aiton) has been exploited as an additive for dietary supplement. In the present study, we investigated the neuroprotective effects of post-treatment with PYC and its therapeutic mechanisms in gerbils. METHODS: The gerbils were given sham and IR operation and intraperitoneally injected with vehicle and Pycnogenol® (25, 50 and 100 mg/kg, respectively) immediately, at 24 hours and 48 hours after sham and IR operation. Through 8-arm radial maze test and passive avoidance test, each spatial memory and short-term memory function was assessed. To examine the neuroprotection of Pycnogenol®, we conducted cresyl violet staining, immunohistochemistry for neuronal nuclei, and Fluoro-Jade B histofluorescence. Moreover, we carried out immunohistochemistry for immunoglobulin G (IgG) to investigate blood-brain barrier (BBB) leakage and interleukin-1ß (IL-1ß) to examine change in pro-inflammatory cytokine. RESULTS: We found that IR-induced memory deficits were significantly ameliorated when 100 mg/kg Pycnogenol® was treated. In addition, treatment with 100 mg/kg Pycnogenol®, not 25 mg/kg nor 50 mg/kg, conferred neuroprotective effect against IR injury. For its mechanisms, we found that 100 mg/kg Pycnogenol® significantly reduced BBB leakage and inhibited the expression of IL-1ß. CONCLUSIONS: Therapeutic treatment (post-treatment) with Pycnogenol® after IR effectively attenuated ischemic brain injury in gerbils. Based on these results, we suggest that PYC can be employed as an important material for ischemic drugs.
Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Fármacos Neuroprotetores , Animais , Gerbillinae , Barreira Hematoencefálica , Doenças Neuroinflamatórias , Hipocampo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Fármacos Neuroprotetores/farmacologiaRESUMO
Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1ß (IL-1ß, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).
Assuntos
Parada Cardíaca , Hipotermia Induzida , Hipotermia , Animais , Masculino , Ratos , Astrócitos/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Heme Oxigenase-1/metabolismo , Membro Posterior/metabolismo , Hipotermia/metabolismo , Hipotermia Induzida/métodos , Neurônios Motores/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Paralisia , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Assuntos
AVC Isquêmico , Remielinização , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neuregulina-1/metabolismo , Camundongos Endogâmicos ICR , Transdução de Sinais , Oligodendroglia/metabolismo , Proliferação de CélulasRESUMO
BACKGROUND: Fameyes (a mixture of Clematis mandshurica Rupr. extract (CMRE) and Erigeron annuus (L.) Pers. extract (EAPE)) containing scutellarin and chlorogenic acid as major components has been reported to relieve mental stress in human subjects, which is reflected in improved scores in psychometric tests measuring levels of depression, anxiety, well-being, and mental fitness. The aim of this study was to examine the anti-stress activity of Fameyes and to investigate the mechanisms of the anti-stress activity using in vitro and in vivo models of stresses. RESULTS: First, we tested the effect of Fameyes on corticosterone-induced cytotoxicity in SH-SY5Y cells (human neurofibroma cell lines). Corticosterone induced apoptosis and decreased cell viability and mitochondrial membrane potential, but treatment with Fameyes inhibited these cytotoxic effects in a dose-dependent manner. However, CMRE and EAPE (components of Fameyes) did not inhibit the cytotoxic effect of corticosterone individually. Next, we tested the effects of Fameyes on rats that were exposed to different kinds of stresses for four weeks. When the stressed rats were treated with Fameyes, their immobility time in forced swim and tail suspension tests decreased. A reduction was also observed in the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone. Furthermore, upon oral administration of Fameyes, serum serotonin levels increased. These in vitro and in vivo results support the anti-stress effects of Fameyes. CONCLUSIONS: In vitro experiments showed anti-stress effects of Fameyes in cell viability, apoptosis, and mitochondrial membrane potential. In addition, in vivo experiments using rats showed anti-stress effects of Fameyes in blood and tissue levels of ACTH, corticosterone, and serotonin, as well as the immobility time in the forced swim and tail suspension tests. However, we did not specifically investigate which ingredient or ingredients showed anti-stress effects, although we reported that Fameyes contained chlorogenic acid and scutellarin major ingredients.
RESUMO
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
RESUMO
Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.
Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Oxazolona/toxicidade , Oxazolona/metabolismo , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , Imunoglobulina E , Extratos Vegetais/farmacologia , Administração Tópica , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , PeleRESUMO
Oxidative stress is strongly implicated in the pathogenesis of Parkinson's disease (PD) through degeneration of dopaminergic neurons. The present study was designed to investigate the underlying mechanisms and therapeutic potential of Brain Factor-7® (BF-7®), a natural compound in silkworm, in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was intraperitoneally injected into mice to cause symptoms of PD. Mice were orally administered BF-7® (a mixture of silk peptides) before and after MPTP treatment. Rotarod performance test was used to assess motor performance. Fluoro-Jade B staining for neurons undergoing degeneration and immunohistochemistry of tyrosine hydroxylase for dopaminergic neurons, 4-hydroxy-2-nonenal (4HNE) for lipid peroxidation, 8-hydroxy-2'-deoxyguanosine (8OHdG) for DNA damage and superoxide dismutase (SOD) 1 and SOD2 for antioxidative enzymes in the pars compacta of the substantia nigra were performed. Results showed that BF-7® treatment significantly improved MPTP-induced motor deficit and protected MPTP-induced dopaminergic neurodegeneration. Furthermore, BF-7® treatment significantly ameliorated MPTP-induced oxidative stress. Increased 4HNE and 8OHdG immunoreactivities induced by MPTP were significantly reduced by BF-7®, whereas SOD1 and SOD2 immunoreactivities decreased by MPTP were significantly enhanced by BF-7®. In conclusion, BF-7® exerted protective and/or therapeutic effects in a mouse model of PD by decreasing effects of oxidative stress on dopaminergic neurons in the substantia nigra pars compacta.
RESUMO
Gingivitis and periodontitis are inflammatory disorders caused by dental plaque and calculus. These disorders often lead to tooth loss if not treated properly. Although antibiotics can be used, it is hard to treat them due to the difficulty in supplying effective doses of antibiotics to lesion areas and side effects associated with long-term use of antibiotics. In the present study, attempts were made to provide in vitro and in vivo evidence to support anti-inflammatory activities of TEES-10®, a mixture of ethanol extracts of Ligularia stenocephala (LSE) and Secale cereale L. sprout (SCSE) toward gingivitis and periodontitis by performing the following experiments. TEES-10® with a ratio of 6:4 (LSE:SCSE) showed the best effects in both stimulating the viability and inhibiting the cytotoxicity. In in vitro experiments, TEES-10® showed an ability to scavenge 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals and remove ROS generated in periodontal ligament cells treated with lipopolysaccharide. TEES-10® also enhanced the viability of stem cells from human exfoliated deciduous teeth and stimulated the osteogenic differentiation of deciduous teeth cells. In in vivo experiments using rats with induced periodontitis, TEES-10® significantly decreased inflammatory cell infiltration and the numbers of osteoclasts, increased alveolar process volume and the numbers of osteoblasts, decreased serum levels of IL-1ß and TNF-α (pro-inflammatory cytokines), and increased serum levels of IL-10 and IL-13 (anti-inflammatory cytokines). These results strongly support the theory that TEES-10® has the potential to be developed as a health functional food that can treat and prevent gingival and periodontal diseases and improve dental health.
RESUMO
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.
Assuntos
Ataque Isquêmico Transitório , Córtex Motor , Traumatismo por Reperfusão , Animais , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Gerbillinae/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Isquemia/metabolismo , Ataque Isquêmico Transitório/metabolismo , Córtex Motor/metabolismo , Prosencéfalo/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.
Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo , Isquemia/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase-1/metabolismo , XantofilasRESUMO
We evaluated the efficacy and safety of MS-10® for the treatment of menopausal symptoms. A double-blind randomized placebo-controlled clinical trial was performed in 71 premenopausal women for 4 and 12 weeks. A total of 12 individual menopausal symptom scores were assessed using the Kupperman index. MS-10 treatment effectively improved the symptoms by â¼48%. In addition, the quality of life of the women improved by 36% from four perspectives: vasomotor, psychosocial, physical, and sexual symptoms as evaluated using the menopause-specific quality of life (MenQoL) questionnaire. Our results show that MS-10 improves insulin-like growth factor-1 (IGF-1) and estrogen utilization through receptor activation, which are thought to have causative therapeutic effects on menopause and aging inhibition in women. Improvement of Enthotheline-1 (ET-1) in the blood after MS-10 intake led to an improvement in menopausal vascular symptoms. Improvements in bone formation and absorption markers such as osteocalcin, bone-specific alkaline phosphatase (BSALP), C-telopeptides of type I collagen (CTx), deoxypyridinoline (deoxyPYD), and N-telopeptides of type I collagen (NTx) in blood or urine indicate that MS-10 fundamentally improves bone health in women. By confirming the improvement of the psychological well-being index based on the improvement of stress hormone cortisol, MS-10 can solve causative psychological and physical stress-related symptoms. Moreover, various safety tests, such as those for female hormones, were confirmed. Therefore, it can be confirmed that MS-10 is a natural pharmaconutraceutical that causatively and safely improves health of women and aids in antiaging processes.
Assuntos
Cirsium , Envelhecimento Saudável , Menopausa , Extratos Vegetais , Thymus (Planta) , Cirsium/química , Feminino , Fogachos/tratamento farmacológico , Humanos , Extratos Vegetais/uso terapêutico , Qualidade de Vida , Thymus (Planta)/químicaRESUMO
The hippocampus has a different vulnerability to ischemia according to the subfields CA1 to CA3 (initials of cornu ammonis). It has been reported that body temperature changes during ischemia affect the degree of neuronal death following transient ischemia. Hypoxiainducible factor 1α (HIF1α) plays a key role in regulating cellular adaptation to low oxygen conditions. In the present study, we investigated the pattern of neuronal death (loss) in CA1 and CA2/3 following 5 min transient forebrain ischemia (TFI) under hyperthermia (39.5±0.2ËC) and the relationship between neuronal death and changes in HIF1α expression using western blot analysis and immunohistochemistry in gerbils. Normothermia or hyperthermia was induced for 30 min before and during the TFI, and neuronal death and HIF1α expression were observed at 0, 3, 6 and 12 h, 1, 2 and 5 days after TFI. Under normothermia, TFIinduced neuronal death of CA1 pyramidal neurons occurred on day 5 after TFI, but CA2/3 pyramidal neurons did not die. In contrast, under hyperthermia, the death of CA1 and CA2/3 pyramidal neurons was observed on day 2 after TFI. Under normothermia, HIF1α expression was significantly elevated in both CA1 and CA2/3 pyramidal neurons at 12 h and 1 day after TFI, and the increased HIF1α immunoreactivity in CA1 was dramatically reduced from 2 days after TFI, but not in CA2/3 pyramidal neurons. Under hyperthermia, the basal expression of HIF1α in the sham group was significantly higher in both CA1 and CA2/3 pyramidal neurons at 0 h after TFI than in the normothermia group. HIF1 expression was continuously higher, peaked at 12 h after TFI, and then significantly decreased from 1 day after TFI. Overall, the present results indicate that resistance to ischemia in CA2/3 pyramidal neurons is closely associated with the persistence of increased expression of HIF1α after ischemic insults and that hyperthermiainduced exacerbation of death of pyramidal neurons is closely related to decreased HIF1α expression after ischemic insults.
Assuntos
Hipocampo , Hipertermia Induzida , Animais , Gerbillinae/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Células Piramidais/metabolismoRESUMO
The extract of Clematis mandshurica Rupr. (CMR) inhibits the production of proinflammatory mediators from lipopolysaccharide-stimulated peritoneal macrophages and concanavalin A-stimulated splenocytes. Erigeron annuus Pers. (EAP) extract suppresses the production of reactive oxygen species (ROS) from preadipocytes. Furthermore, the mixture of the leaf extracts of CMR and EAP, YES-10®, protected against nerve injuries induced by ischemia/reperfusion, suggesting a ROS-scavenging action. These observations show the anti-inflammatory action of YES-10. Inflammatory cytokines can cause alterations in mental function, including depression, by influencing the neurotransmitter system. Thus, it was hypothesized that YES-10 could improve mental health, such as depression, anxiety, and sense of well-being. Seventy-two subjects were recruited and randomly divided into YES-10 or placebo groups (n = 36 per group). Each group was daily administered two capsules orally, containing 200 mg of YES-10 or placebo, for 4 weeks in a double-blinded manner and tested for levels of depression, anxiety, well-being, and mental fitness using the Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Psychosocial Well-being Index (PWI), and Mental Fitness Scale (MFS). In addition, the levels of cortisol (a stress hormone), interleukin-6 (IL-6) (an inflammatory cytokine), and 8-hydroxydeoxyguanosine (8-OHdG; a marker of oxidative stress) in the serum were measured. The BDI, BAI, PWI, and MFS scores decreased significantly, and the serum levels of cortisol, IL-6, and 8-OHdG were lowered significantly (P < .05), suggesting that YES-10 has the ability to improve mental health by relieving stress and by decreasing inflammation and oxidative stress.
Assuntos
Hidrocortisona , Interleucina-6 , Ansiedade , Citocinas , Depressão/tratamento farmacológico , Fadiga , HumanosRESUMO
Korean maritime pine bark (Pinus thunbergii) has been used as an alternative medicine due to its beneficial properties, including antiinflammatory effects. To date, the antiinflammatory and hair growthpromoting effects of Pinus densiflora bark extract have remained elusive. Therefore, in the present study, Pinus thunbergii bark was extracted with pure water (100ËC) and the extract was examined to determine its polyphenol and flavonoid content. C57BL/6 mice were used to assess the effects of the extract to promote hair growth. The extract (1, 2 and 4%) was topically applied onto shaved dorsal skin and hair growth was observed for 17 days. A significant increase in hair growth was observed with 2 and 4% extract. Based on this finding, the optimal dose of the extract for effective hair growth promotion was determined to be 2%. The mechanisms of hair growth promotion were investigated via immunohistochemical analysis of changes in inflammatory cytokines and growth factors in the hair follicles following treatment with 2% extract. The treatment reduced the levels of TNFα and IL1ß, which are proinflammatory cytokines, while it enhanced the levels of IL4 and IL13, which are antiinflammatory cytokines, in the hair follicles. In addition, elevated insulinlike growth factor I and vascular epidermal growth factor were detected in hair follicles following treatment. Based on these findings, it was suggested that the extract of Pinus thunbergii bark may be utilized for hair loss prevention and/or hair growth promotion.
Assuntos
Pinus , Animais , Citocinas/análise , Flavonoides/análise , Flavonoides/farmacologia , Folículo Piloso , Camundongos , Camundongos Endogâmicos C57BL , Pinus/química , Casca de Planta/química , Extratos Vegetais/químicaRESUMO
Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.
RESUMO
BACKGROUND: Ischemia and reperfusion injury in the brain triggers cognitive impairment which are accompanied by neuronal death, loss of myelin sheath and decline in neurotransmission. In this study, we investigated whether therapeutic administration of Brain Factor-7® (BF-7®; a silk peptide) in ischemic gerbils which were developed by transient (five minutes) ischemia and reperfusion in the forebrain (tFI/R) improved cognitive impairment. METHODS: Short-term memory and spatial memory functions were assessed by passive avoidance test and Barnes maze test, respectively. To examine neuronal change in the hippocampus, cresyl violet staining, immunohistochemistry for neuronal nuclei and fluoro Jade B histofluorescence were performed. We carried out immunohistochemistry for myelin basic protein (a marker for myelin) and receptor interacting protein (a marker for oligodendrocytes). Furthermore, immunohistochemistry for vesicular acetylcholine transporter (as a cholinergic transporter) and vesicular glutamate transporter 1 (as a glutamatergic synapse) was done. RESULTS: Administration of BF-7® significantly improved tFI/R-induced cognitive impairment. tFI/R-induced neuronal death was found in the Cornu Ammonis 1 (CA1) subfield of the hippocampus from five days after tFI/R. Treatment with BF-7® following tFI/R did not restore the death (loss) of CA1 neurons following tFI/R. However, BF-7® treatment to the ischemic gerbils significantly improved remyelination and proliferation of oligodendrocytes in the hippocampus with ischemic injury. Treatment with BF-7® to the ischemic gerbils significantly restored vesicular acetylcholine transporter-immunoreactive and vesicular glutamate transporter 1-immunoreactive structures in the hippocampus with ischemic injury. CONCLUSIONS: Based on these results, we suggest that BF-7® can be utilized for improving cognitive impairments induced by ischemic injury as an additive for health/functional foods and/or medicines.