Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053493

RESUMO

Methacrylic acid (MAA)-based biomaterials promote a vascularized host response without the addition of exogenous factors such as cells or growth factors. We presume that materials containing MAA favor an alternative foreign body response, rather than the conventional fibrotic response. Here, we characterize selected aspects of the response to two different forms of MAA-a coating, which can be used to prevascularize the subcutaneous tissue for subsequent therapeutic cell delivery or an injectable hydrogel, which can be used to vascularize and deliver cells simultaneously. We show that the MAA-coating quickly vascularized the subcutaneous space compared to an uncoated silicone tube, and after 14 days of prevascularization, the tissue surrounding the MAA-coated tube presented fewer immune cells than the uncoated control. We also compared the host response to a MAA-PEG (polyethylene glycol) hydrogel at day 1, with pancreatic islets in immune-compromised SCID/bg mice and immune-competent Balb/c mice. The Balb/c mouse presented a more inflammatory response with increased IFN-γ production as compared to the SCID/bg. Together with previously published data, this work contributes to a further understanding of tissue responses to a biomaterial in different forms as used for cell delivery.

2.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003443

RESUMO

Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.


Assuntos
Glaucoma , Pressão Intraocular , Humanos , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Fibronectinas/metabolismo , Tiorredoxinas/metabolismo , Células HeLa , Transferases/metabolismo , Glaucoma/genética , Glaucoma/terapia , Glaucoma/metabolismo , Modelos Animais de Doenças
3.
Biomaterials ; 301: 122265, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586232

RESUMO

Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing ß cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific ß-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of ß-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Camundongos Endogâmicos NOD , Hidrogéis , Células Dendríticas , Tolerância Imunológica , Modelos Animais de Doenças , Imunomodulação , Linfócitos T Reguladores
4.
Cell Death Dis ; 13(6): 575, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773260

RESUMO

Aggregation of misfolded alpha-synuclein (α-synuclein) is a central player in the pathogenesis of neurodegenerative diseases. Therefore, the regulatory mechanism underlying α-synuclein aggregation has been intensively studied in Parkinson's disease (PD) but remains poorly understood. Here, we report p21-activated kinase 4 (PAK4) as a key regulator of α-synuclein aggregation. Immunohistochemical analysis of human PD brain tissues revealed an inverse correlation between PAK4 activity and α-synuclein aggregation. To investigate their causal relationship, we performed loss-of-function and gain-of-function studies using conditional PAK4 depletion in nigral dopaminergic neurons and the introduction of lentivirus expressing a constitutively active form of PAK4 (caPAK4; PAK4S445N/S474E), respectively. For therapeutic relevance in the latter setup, we injected lentivirus into the striatum following the development of motor impairment and analyzed the effects 6 weeks later. In the loss-of-function study, Cre-driven PAK4 depletion in dopaminergic neurons enhanced α-synuclein aggregation, intracytoplasmic Lewy body-like inclusions and Lewy-like neurites, and reduced dopamine levels in PAK4DAT-CreER mice compared to controls. Conversely, caPAK4 reduced α-synuclein aggregation, as assessed by a marked decrease in both proteinase K-resistant and Triton X100-insoluble forms of α-synuclein in the AAV-α-synuclein-induced PD model. Mechanistically, PAK4 specifically interacted with the NEDD4-1 E3 ligase, whose pharmacological inhibition and knockdown suppressed the PAK4-mediated downregulation of α-synuclein. Collectively, these results provide new insights into the pathogenesis of PD and suggest PAK4-based gene therapy as a potential disease-modifying therapy in PD.


Assuntos
Ubiquitina-Proteína Ligases Nedd4 , Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
5.
Exp Neurobiol ; 31(1): 42-53, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35256543

RESUMO

To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN+ neurons against LPS-induced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP+ astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.

6.
Mol Cells ; 44(7): 493-499, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34238765

RESUMO

Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dopamina/uso terapêutico , Tirosina 3-Mono-Oxigenase/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Dopamina/farmacologia , Humanos , Fosforilação , Ratos , Transfecção
7.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071457

RESUMO

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are disorders characterized by progressive degeneration of the nervous system. Currently, there is no disease-modifying treatments for most NDs. Meanwhile, numerous studies conducted on human and animal models over the past decades have showed that exercises had beneficial effects on NDs. Inter-tissue communication by myokine, a peptide produced and secreted by skeletal muscles during exercise, is thought to be an important underlying mechanism for the advantages. Here, we reviewed studies about the effects of myokines regulated by exercise on NDs and their mechanisms. Myokines could exert beneficial effects on NDs through a variety of regulatory mechanisms, including cell survival, neurogenesis, neuroinflammation, proteostasis, oxidative stress, and protein modification. Studies on exercise-induced myokines are expected to provide a novel strategy for treating NDs, for which there are no adequate treatments nowadays. To date, only a few myokines have been investigated for their effects on NDs and studies on mechanisms involved in them are in their infancy. Therefore, future studies are needed to discover more myokines and test their effects on NDs.


Assuntos
Citocinas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia
8.
Oxid Med Cell Longev ; 2021: 8887716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777322

RESUMO

Terpenes are vital metabolites found in various plants and animals and known to be beneficial in the treatment of various diseases. Previously, our group identified terpenes that increased the survival of Alzheimer's disease (AD) model flies expressing human amyloid ß (Aß) and identified linalool as a neuroprotective terpene against Aß toxicity. Linalool is a monoterpene that is commonly present as a constituent in essential oils from aromatic plants and is known to have anti-inflammatory, anticancer, antihyperlipidemia, antibacterial, and neuroprotective properties. Although several studies have shown the beneficial effect of linalool in AD animal models, the mechanisms underlying the beneficial effect of linalool on AD are yet to be elucidated. In the present study, we showed that linalool intake increased the survival of the AD model flies during development in a dose-dependent manner, while the survival of wild-type flies was not affected even at high linalool concentrations. Linalool also decreases Aß-induced apoptosis in eye discs as well as the larval brain. Moreover, linalool intake was found to reduce neurodegeneration in the brain of adult AD model flies. However, linalool did not affect the total amount of Aß42 protein or Aß42 aggregation. Rather, linalool decreased Aß-induced ROS levels, oxidative stress, and inflammatory response in the brains of AD model flies. Furthermore, linalool attenuated the induction of oxidative stress and gliosis by Aß 1-42 treatment in the rat hippocampus. Taken together, our data suggest that linalool exerts its beneficial effects on AD by reducing Aß42-induced oxidative stress and inflammatory reactions.


Assuntos
Monoterpenos Acíclicos/farmacologia , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley
9.
Sci Adv ; 6(19): eaay3909, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494696

RESUMO

Bioinformatic and functional data link integrin-mediated cell adhesion to cellular senescence; however, the significance of and molecular mechanisms behind these connections are unknown. We now report that the focal adhesion-localized ßPAK-interacting exchange factor (ßPIX)-G protein-coupled receptor kinase interacting protein (GIT) complex controls cellular senescence in vitro and in vivo. ßPIX and GIT levels decline with age. ßPIX knockdown induces cellular senescence, which was prevented by reexpression. Loss of ßPIX induced calpain cleavage of the endocytic adapter amphiphysin 1 to suppress clathrin-mediated endocytosis (CME); direct competition of GIT1/2 for the calpain-binding site on paxillin mediates this effect. Decreased CME and thus integrin endocytosis induced abnormal integrin signaling, with elevated reactive oxygen species production. Blocking integrin signaling inhibited senescence in human fibroblasts and mouse lungs in vivo. These results reveal a central role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction.


Assuntos
Calpaína , Integrinas , Animais , Senescência Celular , Adesões Focais/metabolismo , Integrinas/metabolismo , Camundongos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
10.
J Korean Neurosurg Soc ; 63(5): 579-589, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32131152

RESUMO

OBJECTIVE: No optimum genetic rat Huntington model both neuropathological using an adeno-associated virus (AAV-2) vector vector has been reported to date. We investigated whether direct infection of an AAV2 encoding a fragment of mutant huntingtin (AV2-82Q) into the rat striatum was useful for optimizing the Huntington rat model. METHODS: We prepared ten unilateral models by injecting AAV2-82Q into the right striatum, as well as ten bilateral models. In each group, five rats were assigned to either the 2×1012 genome copies (GC)/mL of AAV2-82Q (×1, low dose) or 2×1013 GC/mL of AAV2-82Q (×10, high dose) injection model. Ten unilateral and ten bilateral models injected with AAV-empty were also prepared as control groups. We performed cylinder and stepping tests 2, 4, 6, and 8 weeks after injection, tested EM48 positive mutant huntingtin aggregates. RESULTS: The high dose of unilateral and bilateral AAV2-82Q model showed a greater decrease in performance on the stepping and cylinder tests. We also observed more prominent EM48-positive mutant huntingtin aggregates in the medium spiny neurons of the high dose of AAV2-82Q injected group. CONCLUSION: Based on the results from the present study, high dose of AAV2-82Q is the optimum titer for establishing a Huntington rat model. Delivery of high dose of human AAV2-82Q resulted in the manifestation of Huntington behaviors and optimum expression of the huntingtin protein in vivo.

11.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019113

RESUMO

Alzheimer's disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid ß (Aß) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aß and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Doenças Neurodegenerativas/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Drosophila , Genômica , Humanos , Doenças Neurodegenerativas/metabolismo
12.
Neuromodulation ; 23(2): 167-176, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32103594

RESUMO

OBJECTIVE: The role of the nucleus accumbens (NAc) in chronic neuropathic pain has been suggested, but the role of the NAc in dorsal root ganglion (DRG) neuropathic pain remains unclear. The objective of this study was to determine whether optogenetic stimulation of the NAc influences DRG compression-induced neuropathic pain. MATERIALS AND METHODS: We established sham or DRG lesions in female Sprague-Dawley rats by L4-5 DRG root compression, and the animals received unilateral injections of optogenetic virus in the NAc core. We employed reflexive pain tests to assess the alterations between the groups at the light on/off states. To determine thalamic firing, we performed single-unit in vivo extracellular recording. For statistical analysis, we used one- or two-way repeated-measures analysis of variance. RESULTS: Compared to sham-operated rats, chronic compressed DRG rats showed elevated behavioral sensitivity and sustained neuronal hyperexcitability in the thalamus. NAc optic stimulation improved pain behaviors and lowered thalamic discharge from ventral posterolateral thalamic nuclei. CONCLUSIONS: The NAc core impacts the reward and motivational aspects of chronic neuropathic pain influenced by limbic behaviors to thalamic discharge. Increased thalamic firing activity may result in chronic compressed DRG-induced neuropathic pain, and optogenetic neuromodulation of the NAc can ease chronic pain and thalamic discharge.


Assuntos
Gânglios Espinais/lesões , Terapia a Laser/métodos , Síndromes de Compressão Nervosa/terapia , Neuralgia/terapia , Núcleo Accumbens/fisiologia , Fibras Ópticas , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/fisiopatologia , Síndromes de Compressão Nervosa/fisiopatologia , Neuralgia/fisiopatologia , Manejo da Dor/métodos , Ratos , Ratos Sprague-Dawley
13.
Biomaterials ; 232: 119710, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901691

RESUMO

Pancreatic islets are fragile cell clusters and many isolated islets are not suitable for transplantation. Furthermore, following transplantation, islets will experience a state of hypoxia and poor nutrient diffusion before revascularization, which is detrimental to islet survival; this is affected by islet size and health. Here we engineered tuneable size-controlled pseudo-islets created by dispersing de-aggregated islets in an endothelialized collagen scaffold. This supported subcutaneous engraftment, which returned streptozotocin-induced diabetic mice to normoglycemia. Whole-implant imaging after tissue clearing demonstrated pseudo-islets regenerated their vascular architecture and insulin-secreting ß-cells were within 5 µm of a perfusable vessel - a feature unique to this approach. By using an endothelialized collagen scaffold, this work highlights a novel "bottom-up" approach to islet engineering that provides control over the size and composition of the constructs, while enabling the critical ability to revascularize and engraft when transplanted into the clinically useful subcutaneous space.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Colágeno , Diabetes Mellitus Experimental/terapia , Camundongos
14.
J Clin Med ; 8(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426376

RESUMO

Variants in the APOE gene region may explain ethnic differences in the association of Alzheimer's disease (AD) with ε4. Ethnic differences in allele frequencies for three APOE region SNPs (single nucleotide polymorphisms) were identified and tested for association in 19,398 East Asians (EastA), including Koreans and Japanese, 15,836 European ancestry (EuroA) individuals, and 4985 African Americans, and with brain imaging measures of cortical atrophy in sub-samples of Koreans and EuroAs. Among ε4/ε4 individuals, AD risk increased substantially in a dose-dependent manner with the number of APOE promoter SNP rs405509 T alleles in EastAs (TT: OR (odds ratio) = 27.02, p = 8.80 × 10-94; GT: OR = 15.87, p = 2.62 × 10-9) and EuroAs (TT: OR = 18.13, p = 2.69 × 10-108; GT: OR = 12.63, p = 3.44 × 10-64), and rs405509-T homozygotes had a younger onset and more severe cortical atrophy than those with G-allele. Functional experiments using APOE promoter fragments demonstrated that TT lowered APOE expression in human brain and serum. The modifying effect of rs405509 genotype explained much of the ethnic variability in the AD/ε4 association, and increasing APOE expression might lower AD risk among ε4 homozygotes.

15.
Exp Mol Med ; 51(2): 1-9, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755582

RESUMO

p21-Activated kinase 4 (PAK4), a member of the PAK family, regulates a wide range of cellular functions, including cell adhesion, migration, proliferation, and survival. Dysregulation of its expression and activity thus contributes to the development of diverse pathological conditions. PAK4 plays a pivotal role in cancer progression by accelerating the epithelial-mesenchymal transition, invasion, and metastasis. Therefore, PAK4 is regarded as an attractive therapeutic target in diverse types of cancers, prompting the development of PAK4-specific inhibitors as anticancer drugs; however, these drugs have not yet been successful. PAK4 is essential for embryonic brain development and has a neuroprotective function. A long list of PAK4 effectors has been reported. Recently, the transcription factor CREB has emerged as a novel effector of PAK4. This finding has broad implications for the role of PAK4 in health and disease because CREB-mediated transcriptional reprogramming involves a wide range of genes. In this article, we review the PAK4 signaling pathways involved in prostate cancer, Parkinson's disease, and melanogenesis, focusing in particular on the PAK4-CREB axis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Suscetibilidade a Doenças , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Animais , Humanos , Melaninas/biossíntese , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Quinases Ativadas por p21/química
16.
Int J Mol Sci ; 19(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423807

RESUMO

We demonstrated that capsaicin (CAP), an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), inhibits microglia activation and microglia-derived oxidative stress in the substantia nigra (SN) of MPP⁺-lesioned rat. However, the detailed mechanisms how microglia-derived oxidative stress is regulated by CAP remain to be determined. Here we report that ciliary neurotrophic factor (CNTF) endogenously produced by CAP-activated astrocytes through TRPV1, but not microglia, inhibits microglial activation and microglia-derived oxidative stress, as assessed by OX-6 and OX-42 immunostaining and hydroethidine staining, respectively, resulting in neuroprotection. The significant increase in levels of CNTF receptor alpha (CNTFRα) expression was evident on microglia in the MPP⁺-lesioned rat SN and the observed beneficial effects of CNTF was abolished by treatment with CNTF receptor neutralizing antibody. It is therefore likely that CNTF can exert its effect via CNTFRα on microglia, which rescues dopamine neurons in the SN of MPP⁺-lesioned rats and ameliorates amphetamine-induced rotations. Immunohistochemical analysis revealed also a significantly increased expression of CNTFRα on microglia in the SN from human Parkinson's disease patients compared with age-matched controls, indicating that these findings may have relevance to the disease. These data suggest that CNTF originated from TRPV1 activated astrocytes may be beneficial to treat neurodegenerative disease associated with neuro-inflammation such as Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Fator Neurotrófico Ciliar/farmacologia , Neurônios Dopaminérgicos/patologia , Microglia/patologia , Neuroproteção/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Estresse Oxidativo , Idoso , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor do Fator Neutrófico Ciliar/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Canais de Cátion TRPV/metabolismo
17.
Vaccine ; 36(52): 8028-8038, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30448064

RESUMO

Cell-mediated immunity is an important component of immediate and long-term anti-viral protection. Dendritic cells (DCs) are essential for the induction of cell-mediated immunity by instructing the activation and differentiation of antigen-specific T cell responses. Activated DCs that express co-stimulatory molecules and pro-inflammatory cytokines are necessary to promote the development of type 1 immune responses required for viral control. Here we report that plant-derived virus-like particles (VLPs) bearing influenza hemagglutinins (HA) directly stimulate mouse and human DCs. DCs exposed to H1- and, to a lesser extent, H5-VLPs in vitro rapidly express co-stimulatory molecules and produce pro-inflammatory cytokines including IL-12, IL-6 and TNFα. Furthermore, these VLPs support the activation and differentiation of antigen-specific T cell responses. Mechanistically, H1-VLPs stimulate the activation of kinases typically activated downstream of pattern recognition receptors including AKT, p38, and p42/44 ERK. In vivo, immunization with plant-derived VLPs induce the accumulation of both cDC1s and cDC2 in the draining lymph node and a corresponding increase in T and B cells. VLPs devoid of HA protein activate DCs, suggesting they are intrinsically immunostimulatory. Together, the results demonstrate that these candidate plant-derived VLP vaccines have an inherent and direct stimulatory effect on DCs and can enhance the ability of DCs to promote Type 1 immune responses.


Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Vacinas contra Influenza/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Plantas/genética , Plantas/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
18.
Exp Neurobiol ; 27(3): 226-237, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30022874

RESUMO

An abnormal reorganization of the dentate gyrus and neurotoxic events are important phenotypes in the hippocampus of patients with temporal lobe epilepsy (TLE). The effects of morin, a bioflavonoid constituent of many herbs and fruits, on epileptic seizures have not yet been elucidated, though its beneficial effects, such as its anti-inflammatory and neuroprotective properties, are well-described in various neurodegenerative diseases. In the present study, we investigated whether treatment with morin hydrate (MH) can reduce the susceptibility to seizures, granule cell dispersion (GCD), mammalian target of rapamycin complex 1 (mTORC1) activity, and the increases in the levels of apoptotic molecules and inflammatory cytokines in the kainic acid (KA)-induced seizure mouse model. Our results showed that oral administration of MH could reduce susceptibility to seizures and lead to the inhibition of GCD and mTORC1 activity in the KA-treated hippocampus. Moreover, treatment with MH significantly reduced the increased levels of apoptotic signaling molecules and pro-inflammatory mediators in the KA-treated hippocampus compared with control mice, suggesting a neuroprotective role. Therefore, these results suggest that morin has a therapeutic potential against epilepsy through its abilities to inhibit GCD and neurotoxic events in the in vivo hippocampus.

19.
Nat Commun ; 9(1): 2463, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941886

RESUMO

Dendritic cells (DCs) are first responders of the innate immune system that integrate signals from external stimuli to direct context-specific immune responses. Current models suggest that an active switch from mitochondrial metabolism to glycolysis accompanies DC activation to support the anabolic requirements of DC function. We show that early glycolytic activation is a common program for both strong and weak stimuli, but that weakly activated DCs lack long-term HIF-1α-dependent glycolytic reprogramming and retain mitochondrial oxidative metabolism. Early induction of glycolysis is associated with activation of AKT, TBK, and mTOR, and sustained activation of these pathways is associated with long-term glycolytic reprogramming. We show that inhibition of glycolysis impaired maintenance of elongated cell shape, DC motility, CCR7 oligomerization, and DC migration to draining lymph nodes. Together, our results indicate that early induction of glycolysis occurs independent of pro-inflammatory phenotype, and that glycolysis supports DC migratory ability regardless of mitochondrial bioenergetics.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Glicólise/fisiologia , Fosforilação Oxidativa , Receptores CCR7/metabolismo , Animais , Diferenciação Celular , Forma Celular/fisiologia , Células Dendríticas/fisiologia , Feminino , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
20.
Clin Immunol ; 189: 63-74, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-27094466

RESUMO

This study examines the transcriptional profiles of human adult brain-derived microglia in response to in vitro activating conditions previously used to polarize systemic myeloid cells into M1 and M2 phenotypes. A comparative study is done with monocyte-derived macrophages (MDMs), a myeloid cell type that also participates in disease relevant tissue injury and repair processes in the CNS. Current markers used to distinguish microglia and MDMs have been defined under homeostatic conditions. We observe that gene expression profiles of M1 microglia and MDMs overlap with an overrepresentation of immune-related pathways. M2 microglia and MDMs have distinct transcriptional signatures. Upregulated genes in M2 microglia favor neural-related pathways whereas upregulated genes in M2 MDMs are mostly involved in antigen presentation. Our microarray screen identifies candidate molecules that can potentially distinguish microglia and MDMs under all activation conditions. To be determined is how our observations made using conventional in vitro polarization translate into cellular responses to the complex combination of signals encountered in neurologic disease states.


Assuntos
Encéfalo/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Células Mieloides/metabolismo , Transcriptoma , Adulto , Encéfalo/citologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Análise por Conglomerados , Humanos , Macrófagos/classificação , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA