Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
JCI Insight ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388284

RESUMO

Type 2 diabetes (T2D) arises when pancreatic ß-cells fail to produce sufficient insulin to control blood glucose appropriately. Aberrant nutrient sensing by O-GlcNAcylation and mTORC1 is linked to T2D and the failure of insulin-producing ß-cells. However, the nature of their crosstalk in ß-cells remains unexplored. Recently, O-GlcNAcylation, a post-translation modification controlled by enzymes OGT/OGA, emerged as a pivotal regulator for ß-cell health; deficiency in either enzyme causes ß-cell failure. The present study investigates the previously unidentified connection between nutrient sensor OGT and mTORC1 crosstalk to regulate ß-cell mass and function in vivo. We show reduced OGT and mTORC1 activity in islets of preclinical ß-cell dysfunction model and obese human islets. Using loss or gain of function of OGT, we identified that O-GlcNAcylation positively regulates mTORC1 signaling in ß-cells. O-GlcNAcylation negatively modulates autophagy, as the removal of OGT increases autophagy, while the deletion of OGA decreases it. Increasing mTORC1 signaling, via deletion of TSC2, alleviates the diabetic phenotypes by increasing ß-cell mass but not ß-cell function in OGT deficient mice. Downstream phospho-protein signaling analysis reveal diverging impact on MKK4 and calmodulin signaling between islets with OGT, TSC2, or combined deletion. These data provide new evidence of OGT's significance as an upstream regulator of mTORC1 and autophagy, crucial for the regulation of ß-cell function and glucose homeostasis.

2.
Adv Anat Embryol Cell Biol ; 239: 157-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39283486

RESUMO

Maternal nutrition and metabolic health status during pregnancy are critical factors that shape the life-long health trajectory of offspring. Altered nutrition during specific times of development in utero can lead to functional changes in tissues such as the pancreatic ß-cells, predisposing those tissues to metabolic diseases and Type 2 diabetes that manifest later in life. This chapter will focus on the role of pregnancy complications with altered nutrition during gestation in the maladaptive programming of ß-cell mass and function in the offspring.


Assuntos
Células Secretoras de Insulina , Feminino , Gravidez , Células Secretoras de Insulina/metabolismo , Humanos , Fenômenos Fisiológicos da Nutrição Materna , Animais , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estado Nutricional , Complicações na Gravidez , Diabetes Mellitus Tipo 2/metabolismo
3.
Microorganisms ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39065097

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 6 million deaths worldwide, and the spread of new variants over time increased the ability of this virus to cause infection. The Omicron variant was detected for the first time in Umbria, a region of central Italy, in November 2021 and it induced an unprecedented increase in the number of infection cases. Here, we analysed 3300 SARS-CoV-2 positive samples collected in Umbria between April 2022 and December 2023. We traced the molecular evolution of SARS-CoV-2 variants over time through the Next-Generation Sequencing (NGS) approach. We assessed correlation between SARS-CoV-2 infection and patients' health status. In total, 17.3% of our samples came from patients hospitalised as a consequence of COVID-19 infection even though 81.4% of them received at least three vaccine doses. We identified only Omicron variants, and the BA.5 lineage was detected in the majority of our samples (49.2%). Omicron variants outcompeted each other through the acquisition of mutations especially in Spike glycoprotein that are fingerprints of each variant. Viral antigenic evolution confers higher immunological escape and makes a continuous improvement of vaccine formulation necessary. The continuous update of international genomic databases with sequencing results obtained by emergent pathogens is essential to manage a possible future pandemic.

4.
Nat Genet ; 56(3): 371-376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424461

RESUMO

Available genetically defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Here, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.


Assuntos
Neoplasias , Masculino , Humanos , Genótipo , Fenótipo , Neoplasias/genética , Estudos de Associação Genética
5.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37942568

RESUMO

Eutrophication can impact bacteria by altering fluxes and processing of nutrients and organic matter. However, relatively little is known of how bacterial communities, diversity, and interactions with phytoplankton might respond to nutrient management. We used 16S rRNA amplicon sequencing to compare bacterial assemblages in the water column upstream (control) and downstream (impact) of a wastewater treatment plant (WWTP) located on a eutrophic prairie stream. Sampling occurred before (2012) and after (2018) the 2016 biological nutrient removal (BNR) upgrade that removed >90% of nitrogen (N, mainly NH4+). Multivariate ordination suggested that effluent-impacted bacterial communities were associated mainly with elevated NH4+ concentrations before the upgrade, whereas those after BNR were characteristic of reference systems (low NO3-, diverse regulation). Genera such as Betaproteobacteria and Rhodocyclacea were abundant at impacted sites in 2012, whereas Flavobacterium and a potential pathogen (Legionella) were common at impacted sites in 2018. Nitrifier bacteria (Nitrospira and Nitrosomonas) were present but rare at all sites in 2012, but recorded only downstream of the WWTP in 2018. Generalized additive models showed that BNR reduced bacterial diversity, with ∼70% of the deviance in diversity explained by hydrology, pH, nutrients, and phytoplankton abundance. Overall, NH4+ removal reduced symptoms of cultural eutrophication in microbe assemblages.


Assuntos
Águas Residuárias , Purificação da Água , Nitrogênio/análise , RNA Ribossômico 16S/genética , Desnitrificação , Pradaria , Bactérias/genética , Fitoplâncton
6.
Cancer Res Commun ; 3(11): 2358-2374, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823778

RESUMO

Castration-resistant prostate cancer (CRPC) consists of multiple phenotypic subtypes including androgen receptor (AR)-active prostate cancer (ARPC) and neuroendocrine prostate cancer (NEPC). Tumor cells with these phenotypes can coexist between metastases within a patient and within an individual tumor. Treatments that are effective across CRPC subtypes are currently lacking. Histone deacetylation is crucial for the regulation of chromatin structure and maintenance of cancer cell state and activation of the PI3K/AKT/mTOR signaling cascade is a tumor growth-promoting pathway. We therefore investigated combined targeting of histone deacetylase (HDAC) and PI3K using a rationally designed dual inhibitor, fimepinostat, in CRPC subtypes in vitro and in vivo. Dual HDAC1/2 and PI3K/AKT pathway inhibition by fimepinostat led to robust tumor growth inhibition in both ARPC and NEPC models including cell line- and patient-derived xenografts. HDAC1/2 inhibition combined with PI3K/AKT inhibition was more effective than targeting each pathway alone, producing growth inhibitory effects through cell-cycle inhibition and apoptosis. Molecular profiling revealed on-target effects of combined HDAC1/2 and PI3K/AKT inhibition independent of tumor phenotype. Fimepinostat therapy was also associated with the suppression of lineage transcription factors including AR in ARPC and Achaete-scute homolog 1 (ASCL1) in NEPC. Together, these results indicate that fimepinostat represents a novel therapeutic that may be effective against both ARPC and NEPC through CRPC subtype-dependent and -independent mechanisms. SIGNIFICANCE: CRPC is a heterogeneous disease constituting multiple phenotypic subtypes that often co-occur within tumors or across metastases in patients. Existing targeted therapies for CRPC do not take this into account. Here we show that fimepinostat, a dual HDAC1/2 and PI3K/AKT inhibitor investigated clinically in other cancer types but not prostate cancer, may overcome this heterogeneity by effectively inhibiting both ARPC and NEPC subtypes of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Histona Desacetilases/genética , Fenótipo , Castração
7.
J Endocr Soc ; 7(9): bvad099, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873500

RESUMO

The importance of sexual dimorphism has been highlighted in recent years since the National Institutes of Health's mandate on considering sex as a biological variable. Although recent studies have taken strides to study both sexes side by side, investigations into the normal physiological differences between males and females are limited. In this study, we aimed to characterized sex-dependent differences in glucose metabolism and pancreatic ß-cell physiology in normal conditions using C57BL/6J mice, the most common mouse strain used in metabolic studies. Here, we report that female mice have improved glucose and insulin tolerance associated with lower nonfasted blood glucose and insulin levels compared with male mice at 3 and 6 months of age. Both male and female animals show ß-cell mass expansion from embryonic day 17.5 to adulthood, and no sex differences were observed at embryonic day 17.5, newborn, 1 month, or 3 months of age. However, 6-month-old males displayed increased ß-cell mass in response to insulin resistance compared with littermate females. Molecularly, we uncovered sexual dimorphic alterations in the protein levels of nutrient sensing proteins O-GlcNAc transferase and mTOR, as well as differences in glucose-stimulus coupling mechanisms that may underlie the differences in sexually dimorphic ß-cell physiology observed in C57BL/6J mice.

8.
J Mol Endocrinol ; 71(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855320

RESUMO

Suboptimal in utero environments such as poor maternal nutrition and gestational diabetes can impact fetal birth weight and the metabolic health trajectory of the adult offspring. Fetal growth is associated with alterations in placental mechanistic target of rapamycin (mTOR) signaling; it is reduced in fetal growth restriction and increased in fetal overgrowth. We previously reported that when metabolically challenged by a high-fat diet, placental mTORKO (mTORKOpl) adult female offspring develop obesity and insulin resistance, whereas placental TSC2KO (TSC2KOpl) female offspring are protected from diet-induced obesity and maintain proper glucose homeostasis. In the present study, we sought to investigate whether reducing or increasing placental mTOR signaling in utero alters the programming of adult offspring metabolic tissues preceding a metabolic challenge. Adult male and female mTORKOpl, TSC2KOpl, and respective controls on a normal chow diet were subjected to an acute intraperitoneal insulin injection. Upon insulin stimulation, insulin signaling via phosphorylation of Akt and nutrient sensing via phosphorylation of mTOR target ribosomal S6 were evaluated in the offspring liver, white adipose tissue, and skeletal muscle. Among tested tissues, we observed significant changes only in the liver signaling. In the male mTORKOpl adult offspring liver, insulin-stimulated phospho-Akt was enhanced compared to littermate controls. Basal phospho-S6 level was increased in the mTORKOpl female offspring liver compared to littermate controls and did not increase further in response to insulin. RNA sequencing of offspring liver identified placental mTORC1 programming-mediated differentially expressed genes. The expression of major urinary protein 1 (Mup1) was differentially altered in female mTORKOpl and TSC2KOpl offspring livers and we show that MUP1 level is dependent on overnutrition and fasting status. In summary, deletion of placental mTOR nutrient sensing in utero programs hepatic response to insulin action in a sexually dimorphic manner. Additionally, we highlight a possible role for hepatic and circulating MUP1 in glucose homeostasis that warrants further investigation.


Assuntos
Diabetes Gestacional , Placenta , Animais , Feminino , Masculino , Camundongos , Gravidez , Diabetes Gestacional/metabolismo , Macrossomia Fetal/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Placenta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37609344

RESUMO

Available genetically-defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Herein, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.

10.
J Biol Chem ; 299(2): 102878, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623733

RESUMO

Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in ß-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of ß-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and ß-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.


Assuntos
Expressão Gênica , Células Secretoras de Glucagon , Pancreatopatias , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Secretoras de Glucagon/metabolismo , Pâncreas Exócrino/metabolismo , Proteína Supressora de Tumor p53/genética , Expressão Gênica/genética , Pancreatopatias/genética , Pancreatopatias/fisiopatologia
11.
Mol Imaging Biol ; 25(3): 541-553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36284040

RESUMO

PURPOSE: Small molecule inhibitors that target oncogenic driver kinases are an important class of therapies for non-small cell lung cancer (NSCLC) and other malignancies. However, these therapies are not without their challenges. Each inhibitor works on only a subset of patients, the pharmacokinetics of these inhibitors is variable, and these inhibitors are associated with significant side effects. Many of these inhibitors lack non-invasive biomarkers to confirm pharmacodynamic efficacy, and our understanding of how these inhibitors block cancer cell growth remains incomplete. Limited clinical studies suggest that early (< 2 weeks after start of therapy) changes in tumor glucose consumption, measured by [18F]FDG PET imaging, can predict therapeutic efficacy, but the scope of this strategy and functional relevance of this inhibition of glucose consumption remains understudied. Here we demonstrate that early inhibition of glucose consumption as can be measured clinically with [18F]FDG PET is a consistent phenotype of efficacious targeted kinase inhibitors and is necessary for the subsequent inhibition of growth across models of NSCLC. METHODS: We tested nine NSCLC cell lines (A549, H1129, H1734, H1993, H2228, H3122, H460, HCC827, and PC9 cells) and ten targeted therapies (afatinib, buparlisib, ceritinib, cabozantinib, crizotinib, dovitinib, erlotinib, ponatinib, trametinib, and vemurafenib) across concentrations ranging from 1.6 nM to 5 µM to evaluate whether these inhibitors block glucose consumption at 24-h post-drug treatment and cell growth at 72-h post-drug treatment. We overexpressed the facilitative glucose transporter SLC2A1 (GLUT1) to test the functional connection between blocked glucose consumption and cell growth after treatment with a kinase inhibitor. A subset of these inhibitors and cell lines were studied in vivo. RESULTS: Across the nine NSCLC cell lines, ten targeted therapies, and a range of inhibitor concentrations, whether a kinase inhibitor blocked glucose consumption at 24-h post-drug treatment strongly correlated with whether that inhibitor blocked cell growth at 72-h post-drug treatment in cell culture. These results were confirmed in vivo with [18F]FDG PET imaging. GLUT1 overexpression blocked the kinase inhibitors from limiting glucose consumption and cell growth. CONCLUSIONS: Our results demonstrate that the early inhibition of lung cancer glucose consumption in response to a kinase inhibitor is a strong biomarker of and is often required for the subsequent inhibition of cell growth. Early inhibition of glucose consumption may provide complementary information to other biomarkers in determining whether a drug will effectively limit tumor growth.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Biomarcadores , Linhagem Celular Tumoral
12.
Front Endocrinol (Lausanne) ; 13: 1040014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387851

RESUMO

Protein O-GlcNAcylation is a nutrient and stress-sensitive protein post-translational modification (PTM). The addition of an O-GlcNAc molecule to proteins is catalyzed by O-GlcNAc transferase (OGT), whereas O-GlcNAcase (OGA) enzyme is responsible for removal of this PTM. Previous work showed that OGT is highly expressed in the pancreas, and we demonstrated that hypo-O-GlcNAcylation in ß-cells cause severe diabetes in mice. These studies show a direct link between nutrient-sensitive OGT and ß-cell health and function. In the current study, we hypothesized that hyper-O-GlcNAcylation may confer protection from ß-cell failure in high-fat diet (HFD)-induced obesity. To test this hypothesis, we generated a mouse model with constitutive ß-cell OGA ablation (ßOGAKO) to specifically increase O-GlcNAcylation in ß-cells. Under normal chow diet, young male and female ßOGAKO mice exhibited normal glucose tolerance but developed glucose intolerance with aging, relative to littermate controls. No alteration in ß-cell mass was observed between ßOGAKO and littermate controls. Total insulin content was reduced despite an increase in pro-insulin to insulin ratio in ßOGAKO islets. ßOGAKO mice showed deficit in insulin secretion in vivo and in vitro. When young animals were subjected to HFD, both male and female ßOGAKO mice displayed normal body weight gain and insulin tolerance but developed glucose intolerance that worsened with longer exposure to HFD. Comparable ß-cell mass was found between ßOGAKO and littermate controls. Taken together, these data demonstrate that the loss of OGA in ß-cells reduces ß-cell function, thereby perturbing glucose homeostasis. The findings reinforce the rheostat model of intracellular O-GlcNAcylation where too much (OGA loss) or too little (OGT loss) O-GlcNAcylation are both detrimental to the ß-cell.


Assuntos
Intolerância à Glucose , Células Secretoras de Insulina , Camundongos , Masculino , Feminino , Animais , Intolerância à Glucose/etiologia , Células Secretoras de Insulina/metabolismo , Homeostase , Insulina/metabolismo , Glucose/metabolismo
13.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955908

RESUMO

The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects. Cellular sensitivity to IR is highly correlated with the ability of cells to repair DNA lesions, in particular coding sequences of genes that affect that process and of others that contribute to preserving genomic integrity. However, accurate profiling of the molecular events underlying individual sensitivity requires techniques with sensitive readouts. Here we summarize recent studies that have used whole-genome analysis and identified genes that impact individual radiosensitivity. Whereas microarray and RNA-seq provide a snapshot of the transcriptome, RNA interference (RNAi) and CRISPR-Cas9 techniques are powerful tools that enable modulation of gene expression and characterizing the function of specific genes involved in radiosensitivity or radioresistance. Notably, CRISPR-Cas9 has altered the landscape of genome-editing technology with its increased readiness, precision, and sensitivity. Identifying critical regulators of cellular radiosensitivity would help tailor regimens that enhance the efficacy of therapeutic treatments and fast-track prediction of clinical outcomes. It would also contribute to occupational protection based on average individual sensitivity, as well as the formulation of countermeasures to the harmful effects of radiation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , DNA , Edição de Genes/métodos , Testes Genéticos , Humanos , Tolerância a Radiação/genética
14.
Int J Radiat Biol ; 98(12): 1789-1801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939063

RESUMO

BACKGROUND: In the past three decades, a large body of data on the effects of exposure to ionizing radiation and the ensuing changes in gene expression has been generated. These data have allowed for an understanding of molecular-level events and shown a level of consistency in response despite the vast formats and experimental procedures being used across institutions. However, clarity on how this information may inform strategies for health risk assessment needs to be explored. An approach to bridge this gap is the adverse outcome pathway (AOP) framework. AOPs represent an illustrative framework characterizing a stressor associated with a sequential set of causally linked key events (KEs) at different levels of biological organization, beginning with a molecular initiating event (MIE) and culminating in an adverse outcome (AO). Here, we demonstrate the interpretation of transcriptomic datasets in the context of the AOP framework within the field of ionizing radiation by using a lung cancer AOP (AOP 272: https://www.aopwiki.org/aops/272) as a case example. METHODS: Through the mining of the literature, radiation exposure-related transcriptomic studies in line with AOP 272 related to lung cancer, DNA damage response, and repair were identified. The differentially expressed genes within relevant studies were collated and subjected to the pathway and network analysis using Reactome and GeneMANIA platforms. Identified pathways were filtered (p < .001, ≥3 genes) and categorized based on relevance to KEs in the AOP. Gene connectivities were identified and further grouped by gene expression-informed associated events (AEs). Relevant quantitative dose-response data were used to inform the directionality in the expression of the genes in the network across AEs. RESULTS: Reactome analyses identified 7 high-level biological processes with multiple pathways and associated genes that mapped to potential KEs in AOP 272. The gene connectivities were further represented as a network of AEs with associated expression profiles that highlighted patterns of gene expression levels. CONCLUSIONS: This study demonstrates the application of transcriptomics data in AOP development and provides information on potential data gaps. Although the approach is new and anticipated to evolve, it shows promise for improving the understanding of underlying mechanisms of disease progression with a long-term vision to be predictive of adverse outcomes.


Assuntos
Rotas de Resultados Adversos , Neoplasias Pulmonares , Lesões por Radiação , Humanos , Transcriptoma , Medição de Risco/métodos , Radiação Ionizante , Neoplasias Pulmonares/genética
15.
Intensive Care Med Exp ; 10(1): 14, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467176

RESUMO

BACKGROUND: Sepsis is associated with substantial mortality rates. Antibiotic treatment is crucial, but global antibiotic resistance is now classified as one of the top ten global public health risks facing humanity. Ozone (O3) is an inorganic molecule with no evident function in the body. We investigated the bactericide properties of ozone, using a novel system of extracorporeal ozone blood treatment. We hypothesized that ozone would decrease the concentration of viable Escherichia coli (E. coli) in human whole blood and that the system would be technically feasible and physiologically tolerable in a clinically relevant model of E. coli sepsis in swine. METHODS: The E. coli strain B09-11822, a clinical isolate from a patient with septic shock was used. The in vitro study treated E. coli infected human whole blood (n = 6) with ozone. The in vivo 3.5-h sepsis model randomized swine to E. coli infusion and ozone treatment (n = 5) or E. coli infusion and no ozone treatment (n = 5). Live E. coli, 5 × 107 colony-forming units (CFU/mL) was infused in a peripheral vein. Ozone treatment was initiated with a duration of 30 min after 1.5 h. RESULTS: The single pass in vitro treatment decreased E. coli by 27%, mean 1941 to 1422 CFU/mL, mean of differences - 519.0 (95% CI - 955.0 to - 82.98, P = 0.0281). pO2 increased (95% CI 31.35 to 48.80, P = 0.0007), pCO2 decreased (95% CI - 3.203 to - 1.134, P = 0.0069), oxyhemoglobin increased (95% CI 1.010 to 3.669, P = 0.0113). Methemoglobin was not affected. In the sepsis model, 9/10 swine survived. One swine randomized to ozone treatment died from septic shock before initiation of the treatment. Circulatory, respiratory, and metabolic parameters were not affected by the ozone treatment. E. coli in arterial blood, in organs and in aerobic and anaerobic blood cultures did not differ. Hemoglobin, leucocytes, and methemoglobin were not affected by the treatment. CONCLUSIONS: Ozone decreased the concentration of viable E. coli in human whole blood. The system was technically feasible and physiologically tolerable in porcine sepsis/septic shock and should be considered for further studies towards clinical applications.

16.
Biology (Basel) ; 11(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35336721

RESUMO

Acute pancreatitis (AP) involves premature trypsinogen activation, which mediates a cascade of pro-inflammatory signaling that causes early stages of pancreatic injury. Activation of the transcription factor κB (NF-κB) and secretion of pro-inflammatory mediators are major events in AP. O-GlcNAc transferase (OGT), a stress-sensitive enzyme, was recently implicated to regulate NF-κB activation and inflammation in AP in vitro. This study aims to determine whether a pancreas-specific transgenic reduction in OGT in a mouse model affects the severity of AP in vivo. Mice with reduced pancreatic OGT (OGTPanc+/-) at 8 weeks of age were randomized to cerulein, which induces pancreatitis, or saline injections. AP was confirmed by elevated amylase levels and on histological analysis. The histological scoring demonstrated that OGTPanc+/- mice had decreased severity of AP. Additionally, serum lipase, LDH, and TNF-α in OGTPanc+/- did not significantly increase in response to cerulein treatment as compared to controls, suggesting attenuated AP induction in this model. Our study reveals the effect of reducing pancreatic OGT levels on the severity of pancreatitis, warranting further investigation on the role of OGT in the pathology of AP.

17.
Microbiol Spectr ; 10(2): e0210721, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234503

RESUMO

There is an utmost need for rapid antimicrobial susceptibility testing (AST) of bacteria causing bloodstream infections (BSI). The dRAST (QuantaMatrix Inc., Seoul) is a commercial method that can be performed directly from positive blood cultures. The present study aims to evaluate the performance of the dRAST on prospective clinical blood culture samples. A sample prescreening algorithm based on clinical routine was used to choose relevant clinical positive blood culture samples for testing on the dRAST. Rapid identification via short-term culture followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used during the test run, and dRAST results were compared to European Committee on Antimicrobial Susceptibility Testing (EUCAST) disk diffusion as the reference method. The performance of the dRAST was also evaluated on selected multidrug resistant (MDR) isolates in simulated blood cultures. Using the sample pre-screening algorithm, 242 clinical blood culture samples were selected and tested on the dRAST, of which 200 (82.6%) gave valid AST tests results comprising 76 Gram-positive and 124 Gram-negative samples. AST measurements from the dRAST and disk diffusion from clinical samples had an overall agreement rate of 95.5%. When using simulated blood culture samples of 31 selected MDR isolates, the agreement between dRAST and disk diffusion was 87.2%. While the agreement rates were high, it was noted that the dRAST was not reliable for AST of certain antibiotic-bacteria combinations. In conclusion, the present study demonstrates that dRAST delivers rapid AST results from blood cultures and using a prescreening algorithm for sample selection is important in implementation of modern AST methods such as dRAST. IMPORTANCE There is an utmost need for rapid antimicrobial susceptibility testing (AST) of bacteria causing bloodstream infections (BSI). The dRAST (QuantaMatrix Inc., Seoul) is a rapid AST method that can be performed directly from positive blood cultures. The dRAST gives results in 6 h compared to conventional AST methods that needs 18-20 h of incubation. The present study aims to evaluate the performance of the dRAST in a clinical setting with the use of a sample selection algorithm to reduce incompatible sample numbers. The study found that while the agreement rates between dRAST and reference AST methods were high, it was noted that the dRAST was not reliable for AST of certain antibiotic-bacteria combinations. In conclusion, the present study demonstrates that dRAST delivers rapid AST results from blood cultures and using a prescreening algorithm for sample selection is important in implementation of modern AST methods such as dRAST.


Assuntos
Bacteriemia , Sepse , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Bactérias , Hemocultura/métodos , Bactérias Gram-Negativas , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Sepse/tratamento farmacológico
18.
Biomedicines ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36672613

RESUMO

Previously we utilized a murine model to demonstrate that Ogt deletion in pancreatic progenitors (OgtKOPanc) causes pancreatic hypoplasia, partly mediated by a reduction in the Pdx1-expressing pancreatic progenitor pool. Here, we continue to explore the role of Ogt in pancreas development by deletion of Ogt in the endocrine progenitors (OgtKOEndo). At birth OgtKOEndo, were normoglycemic and had comparable pancreas weight and α-cell, and ß-cell mass to littermate controls. At postnatal day 23, OgtKOEndo displayed wide ranging but generally elevated blood glucose levels, with histological analyses showing aberrant islet architecture with α-cells invading the islet core. By postnatal day 60, these mice were overtly diabetic and showed significant loss of both α-cell and ß-cell mass. Together, these results highlight the indispensable role of Ogt in maintenance of ß-cell mass and glucose homeostasis.

19.
Gut Microbes ; 13(1): 1983101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34816784

RESUMO

Emerging research suggests gut microbiome may play a role in pancreatic cancer initiation and progression, but cultivation of the cancer microbiome remains challenging. This pilot study aims to investigate the possibility to cultivate pancreatic microbiome from pancreatic cystic lesions associated with invasive cancer. Intra-operatively acquired pancreatic cyst fluid samples showed culture-positivity mainly in the intraductal papillary mucinous neoplasm (IPMN) group of lesions. MALDI-TOF MS profiling analysis shows Gammaproteobacteria and Bacilli dominate among individual bacteria isolates. Among cultivated bacteria, Gammaproteobacteria, particularly Klebsiella pneumoniae, but also Granulicatella adiacens and Enterococcus faecalis, demonstrate consistent pathogenic properties in pancreatic cell lines tested in ex vivo co-culture models. Pathogenic properties include intracellular survival capability, cell death induction, or causing DNA double-strand breaks in the surviving cells resembling genotoxic effects. This study provides new insights into the role of the pancreatic microbiota in the intriguing link between pancreatic cystic lesions and cancer.


Assuntos
Dano ao DNA , Microbiota/fisiologia , Neoplasias Intraductais Pancreáticas/microbiologia , Neoplasias Intraductais Pancreáticas/patologia , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Viabilidade Microbiana/efeitos dos fármacos , Projetos Piloto
20.
J Evid Based Integr Med ; 26: 2515690X211043741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34657477

RESUMO

Citrus grandis or Citrus maxima, widely recognized as Pomelo is widely cultivated in many countries because of their large amounts of functional, nutraceutical and biological activities. In traditional medicine, various parts of this plant including leaf, pulp and peel are used for generations as they are scientifically proven to have therapeutic potentials and safe for human use. The main objective of this study was to review the different therapeutic applications of Citrus grandis and the phytochemicals associated with its medicinal values. In this article different pharmacological properties like antimicrobial, antitumor, antioxidant, anti-inflammatory, anticancer, antiepileptic, stomach tonic, cardiac stimulant, cytotoxic, hepatoprotective, nephroprotective, and anti-diabetic activities of the plant are highlighted. The enrichment of the fruit with flavonoids, polyphenols, coumarins, limonoids, acridone alkaloids, essential oils and vitamins mainly helps in exhibiting the pharmacological activities within the body. The vitamins enriched fruit is rich in nutritional value and also has minerals like calcium, phosphorous, sodium and potassium, which helps in maintaining the proper health and growth of the bones as well as the electrolyte balance of the body. To conclude, various potential therapeutic effects of Citrus grandis have been demonstrated in recent literature. Further studies on various parts of fruit, including pulp, peel, leaf, seed and it essential oil could unveil additional pharmacological activities which can be beneficial to the mankind.


Assuntos
Citrus , Óleos Voláteis , Antioxidantes , Frutas , Humanos , Compostos Fitoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA