Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097842

RESUMO

The family Coronaviridae includes viruses with positive-sense RNA genomes of 22-36 kb that are expressed through a nested set of 3' co-terminal subgenomic mRNAs. Members of the subfamily Orthocoronavirinae are characterized by 80-160 nm diameter, enveloped virions with spike projections. The orthocoronaviruses, severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome-related coronavirus are extremely pathogenic for humans and in the last two decades have been responsible for the SARS and MERS epidemics. Another orthocoronavirus, severe acute respiratory syndrome coronavirus 2, was responsible for the recent global COVID-19 pandemic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Coronaviridae which is available at www.ictv.global/report/coronaviridae.


Assuntos
Coronaviridae , Humanos , Coronaviridae/genética , Genoma Viral , Pandemias , Vírion/genética , Replicação Viral , RNA Subgenômico/genética
2.
Viruses ; 13(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834994

RESUMO

In the last two decades, several coronavirus (CoV) interspecies jumping events have occurred between bats and other animals/humans, leading to major epidemics/pandemics and high fatalities. The SARS epidemic in 2002/2003 had a ~10% fatality. The discovery of SARS-related CoVs in horseshoe bats and civets and genomic studies have confirmed bat-to-civet-to-human transmission. The MERS epidemic that emerged in 2012 had a ~35% mortality, with dromedaries as the reservoir. Although CoVs with the same genome organization (e.g., Tylonycteris BatCoV HKU4 and Pipistrellus BatCoV HKU5) were also detected in bats, there is still a phylogenetic gap between these bat CoVs and MERS-CoV. In 2016, 10 years after the discovery of Rhinolophus BatCoV HKU2 in Chinese horseshoe bats, fatal swine disease outbreaks caused by this virus were reported in southern China. In late 2019, an outbreak of pneumonia emerged in Wuhan, China, and rapidly spread globally, leading to >4,000,000 fatalities so far. Although the genome of SARS-CoV-2 is highly similar to that of SARS-CoV, patient zero and the original source of the pandemic are still unknown. To protect humans from future public health threats, measures should be taken to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments.


Assuntos
COVID-19/virologia , Quirópteros/virologia , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Adaptação ao Hospedeiro , Síndrome Respiratória Aguda Grave/virologia , Alphacoronavirus/genética , Alphacoronavirus/fisiologia , Animais , COVID-19/transmissão , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Especificidade de Hospedeiro , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/veterinária
3.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568452

RESUMO

Compared to other human coronaviruses, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) are relatively understudied. We report a fatal case of COVID-19 pneumonia coinfected with HCoV-229E in Hong Kong. Genome sequencing of SARS-CoV-2 and HCoV-229E from a nasopharyngeal sample of the patient showed that the SARS-CoV-2 strain HK13 was most closely related to SARS-CoV-2 type strain Wuhan-Hu-1 (99.99% nucleotide identity), compatible with his recent history of travel to Wuhan. The HCoV-229E strain HK20-42 was most closely related to HCoV-229E strain SC0865 from the United States (99.86% nucleotide identity). To investigate if it may represent a newly emerged HCoV-229E genotype in Hong Kong, we retrieved 41 archived respiratory samples that tested positive for HCoV-229E from 2004 to 2019. Pneumonia and exacerbations of chronic airway diseases were common among infected patients. Complete RdRp, S, and N gene sequencing of the 41 HCoV-229E strains revealed that our contemporary HCoV-229E strains have undergone significant genetic drift with clustering of strains in chronological order. Two novel genogroups were identified, in addition to previously described genogroups 1 to 4, with recent circulating strains including strain HK20-42 belonging to novel genogroup 6. Positive selection was detected in the spike protein and receptor-binding domain, which may be important for viral evolution at the receptor-binding interphase. Molecular dating analysis showed that HCoV-229E shared the most recent common ancestor with bat and camel/alpaca 229E-related viruses at ∼1884, while camel/alpaca viruses had a relatively recent common ancestor at ∼1999. Further studies are required to ascertain the evolutionary origin and path of HCoV-229E.IMPORTANCE Since its first appearance in the 1960s, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) have been relatively understudied. In this study, we report a fatal case of COVID-19 coinfected with HCoV-229E in Hong Kong. Genome sequencing revealed that our SARS-CoV-2 strain is highly identical to the SARS-CoV-2 strain from Wuhan, compatible with the patient's recent travel history, whereas our HCoV-229E strain in this study is highly identical to a recent strain in the United States. We also retrieved 41 archived HCoV-229E strains from 2004 to 2019 in Hong Kong for sequence analysis. Pneumonia and exacerbations of chronic airway diseases were common diagnoses among the 41 patients. The results showed that HCoV-229E was evolving in chronological order. Two novel genogroups were identified in addition to the four preexisting HCoV-229E genogroups, with recent circulating strains belonging to novel genogroup 6. Molecular clock analysis dated bat-to-human and bat-to-camelid transmission to as early as 1884.


Assuntos
COVID-19/patologia , Resfriado Comum/patologia , Coronavirus Humano 229E/genética , Variação Genética/genética , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , COVID-19/mortalidade , Criança , Pré-Escolar , Coinfecção/virologia , Evolução Molecular , Feminino , Genoma Viral/genética , Hong Kong , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Domínios Proteicos/genética , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Adulto Jovem
4.
Nat Commun ; 12(1): 216, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431849

RESUMO

While a number of human coronaviruses are believed to be originated from ancestral viruses in bats, it remains unclear if bat coronaviruses are ready to cause direct bat-to-human transmission. Here, we report the isolation of a MERS-related coronavirus, Tylonycteris-bat-CoV-HKU4, from lesser bamboo bats. Tylonycteris-bat-CoV-HKU4 replicates efficiently in human colorectal adenocarcinoma and hepatocarcinoma cells with cytopathic effects, and can utilize human-dipeptidyl-peptidase-4 and dromedary camel-dipeptidyl-peptidase-4 as the receptors for cell entry. Flow cytometry, co-immunoprecipitation and surface plasmon resonance assays show that Tylonycteris-bat-CoV-HKU4-receptor-binding-domain can bind human-dipeptidyl-peptidase-4, dromedary camel-dipeptidyl-peptidase-4, and Tylonycteris pachypus-dipeptidyl-peptidase-4. Tylonycteris-bat-CoV-HKU4 can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease. Positive virus and inflammatory changes were detected in lungs and brains of infected mice, associated with suppression of antiviral cytokines and activation of proinflammatory cytokines and chemokines. The results suggest that MERS-related bat coronaviruses may overcome species barrier by utilizing dipeptidyl-peptidase-4 and potentially emerge in humans by direct bat-to-human transmission.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Animais , Encéfalo/patologia , Células CACO-2 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Citocinas/metabolismo , Dipeptidil Peptidase 4/genética , Células HEK293 , Especificidade de Hospedeiro , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética
5.
Emerg Infect Dis ; 26(12): 2961-2965, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32730733

RESUMO

Severe acute respiratory syndrome coronavirus 2 did not replicate efficiently in 13 bat cell lines, whereas severe acute respiratory syndrome coronavirus replicated efficiently in kidney cells of its ancestral host, the Rhinolophus sinicus bat, suggesting different evolutionary origins. Structural modeling showed that RBD/RsACE2 binding may contribute to the differential cellular tropism.


Assuntos
SARS-CoV-2/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Tropismo Viral/genética , Animais , COVID-19 , Quirópteros/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , Replicação Viral
6.
Emerg Infect Dis ; 26(7): 1542-1547, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32315281

RESUMO

We showed that severe acute respiratory syndrome coronavirus 2 is probably a novel recombinant virus. Its genome is closest to that of severe acute respiratory syndrome-related coronaviruses from horseshoe bats, and its receptor-binding domain is closest to that of pangolin viruses. Its origin and direct ancestral viruses have not been identified.


Assuntos
Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Filogenia , Recombinação Genética , SARS-CoV-2
7.
Viruses ; 11(11)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653070

RESUMO

While dromedaries are the immediate animal source of Middle East Respiratory Syndrome (MERS) epidemic, viruses related to MERS coronavirus (MERS-CoV) have also been found in bats as well as hedgehogs. To elucidate the evolution of MERS-CoV-related viruses and their interspecies transmission pathway, samples were collected from different mammals in China. A novel coronavirus related to MERS-CoV, Erinaceus amurensis hedgehog coronavirus HKU31 (Ea-HedCoV HKU31), was identified from two Amur hedgehogs. Genome analysis supported that Ea-HedCoV HKU31 represents a novel species under Merbecovirus, being most closely related to Erinaceus CoV from European hedgehogs in Germany, with 79.6% genome sequence identity. Compared to other members of Merbecovirus, Ea-HedCoV HKU31 possessed unique non-structural proteins and putative cleavage sites at ORF1ab. Phylogenetic analysis showed that Ea-HedCoV HKU31 and BetaCoV Erinaceus/VMC/DEU/2012 were closely related to NeoCoV and BatCoV PREDICT from African bats in the spike region, suggesting that the latter bat viruses have arisen from recombination between CoVs from hedgehogs and bats. The predicted HKU31 receptor-binding domain (RBD) possessed only one out of 12 critical amino acid residues for binding to human dipeptidyl peptidase 4 (hDPP4), the MERS-CoV receptor. The structural modeling of the HKU31-RBD-hDPP4 binding interphase compared to that of MERS-CoV and Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) suggested that HKU31-RBD is unlikely to bind to hDPP4. Our findings support that hedgehogs are an important reservoir of Merbecovirus, with evidence of recombination with viruses from bats. Further investigations in bats, hedgehogs and related animals are warranted to understand the evolution of MERS-CoV-related viruses.


Assuntos
Betacoronavirus/isolamento & purificação , Reservatórios de Doenças/virologia , Ouriços/virologia , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , China , Quirópteros/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Evolução Molecular , Genoma Viral , Humanos , Filogenia
8.
Viruses ; 11(5)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067830

RESUMO

While bats are increasingly recognized as a source of coronavirus epidemics, the diversity and emergence potential of bat coronaviruses remains to be fully understood. Among 1779 bat samples collected in China, diverse coronaviruses were detected in 32 samples from five different bat species by RT-PCR. Two novel alphacoronaviruses, Rhinolophus sinicus bat coronavirus HKU32 (Rs-BatCoV HKU32) and Tylonycteris robustula bat coronavirus HKU33 (Tr-BatCoV HKU33), were discovered from Chinese horseshoe bats in Hong Kong and greater bamboo bats in Guizhou Province, respectively. Genome analyses showed that Rs-BatCoV HKU32 is closely related to BatCoV HKU10 and related viruses from diverse bat families, whereas Tr-BatCoV HKU33 is closely related to BtNv-AlphaCoV and similar viruses exclusively from bats of Vespertilionidae family. The close relatedness of Rs-BatCoV HKU32 to BatCoV HKU10 which was also detected in Pomona roundleaf bats from the same country park suggests that these viruses may have the tendency of infecting genetically distant bat populations of close geographical proximity with subsequent genetic divergence. Moreover, the presence of SARSr-CoV ORF7a-like protein in Rs-BatCoV HKU32 suggests a common evolutionary origin of this accessory protein with SARS-CoV, also from Chinese horseshoe bats, an apparent reservoir for coronavirus epidemics. The emergence potential of Rs-BatCoV HKU32 should be explored.


Assuntos
Quirópteros/virologia , Coronavirus/isolamento & purificação , Reservatórios de Doenças/virologia , Animais , China , Coronavirus/classificação , Coronavirus/genética , Evolução Molecular , Genoma Viral , Fases de Leitura Aberta , Filogenia
9.
Viruses ; 11(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791586

RESUMO

Bats are a unique group of mammals of the order Chiroptera. They are highly diversified and are the group of mammals with the second largest number of species. Such highly diversified cell types and receptors facilitate them to be potential hosts of a large variety of viruses. Bats are the only group of mammals capable of sustained flight, which enables them to disseminate the viruses they harbor and enhance the chance of interspecies transmission. This article aims at reviewing the various aspects of the global epidemiology of bat coronaviruses (CoVs). Before the SARS epidemic, bats were not known to be hosts for CoVs. In the last 15 years, bats have been found to be hosts of >30 CoVs with complete genomes sequenced, and many more if those without genome sequences are included. Among the four CoV genera, only alphaCoVs and betaCoVs have been found in bats. As a whole, both alphaCoVs and betaCoVs have been detected from bats in Asia, Europe, Africa, North and South America and Australasia; but alphaCoVs seem to be more widespread than betaCoVs, and their detection rate is also higher. For betaCoVs, only those from subgenera Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus have been detected in bats. Most notably, horseshoe bats are the reservoir of SARS-CoV, and several betaCoVs from subgenus Merbecovirus are closely related to MERS-CoV. In addition to the interactions among various bat species themselves, bat⁻animal and bat⁻human interactions, such as the presence of live bats in wildlife wet markets and restaurants in Southern China, are important for interspecies transmission of CoVs and may lead to devastating global outbreaks.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Reservatórios de Doenças/virologia , Evolução Molecular , África/epidemiologia , Animais , Ásia/epidemiologia , Australásia/epidemiologia , China/epidemiologia , Coronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Europa (Continente)/epidemiologia , Genoma Viral , Saúde Global , Humanos , América do Norte/epidemiologia , Filogenia , Filogeografia , América do Sul/epidemiologia
10.
J Infect Dis ; 218(2): 197-207, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29346682

RESUMO

Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4.


Assuntos
Betacoronavirus/fisiologia , Quirópteros , Dipeptidil Peptidase 4/metabolismo , Evolução Molecular , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus/genética
11.
Int J Mol Sci ; 18(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035289

RESUMO

While dromedary camels are the immediate animal source of MERS coronavirus (MERS-CoV) infection, the evolutionary origin of MERS-CoV remains obscure. We analyzed 219 camel and human MERS-CoV genome sequences available in GenBank. Phylogenetic analysis showed that 5 and 214 strains belong to clade A and B, respectively, with clade A further divided into lineage A1 (3 human strains) and lineage A2 (2 camel strains), and clade B divided into B1 to B6 (each containing both human and camel strains). Recombination analysis showed potential recombination events in five strains from dromedaries in Saudi Arabia, with recombination between lineage B5 and B3 in four strains, and between lineage B3 and B4 in one strain. The spike protein showed the highest number of amino acid substitutions, especially between A2 and other lineages, and contained positively selected codons. Notably, codon 1020 was positively selected among B and B5 strains, and can distinguish between clade A (Q1020) and B (R1020/H1020) strains, suggesting that this residue may play a role in the evolution of S protein during divergence of different lineages. The time of the most recent common ancestor of all MERS-CoV was dated to approximately 2010. The implications on the role of camels in the evolution of MERS-CoV are discussed.


Assuntos
Infecções por Coronavirus/virologia , Evolução Molecular , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Sequência de Aminoácidos , Animais , Camelus/virologia , Biologia Computacional/métodos , Reservatórios de Doenças , Genoma Viral , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Modelos Biológicos , Fases de Leitura Aberta , Filogenia , Filogeografia , Conformação Proteica , Recombinação Genética , Arábia Saudita , Seleção Genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade , Sequenciamento Completo do Genoma , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA