Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113205, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792530

RESUMO

Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Guanosina Trifosfato/metabolismo
2.
Sci Rep ; 12(1): 10237, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715465

RESUMO

Phthalates are ubiquitously used as plasticizers in various consumer care products. Diethyl phthalate (DEP), one of the main phthalates, elicits developmental and reproductive toxicities but the underlying mechanisms are not fully understood. Chemogenomic profiling of DEP in S. cerevisiae revealed that two transcription factors Stp1 and Dal81 involved in the Ssy1-Ptr5-Ssy5 (SPS) amino acid-sensing pathway provide resistance to DEP. Growth inhibition of yeast cells by DEP was stronger in poor nitrogen medium in comparison to nitrogen-rich medium. Addition of amino acids to nitrogen-poor medium suppressed DEP toxicity. Catabolism of amino acids via the Ehrlich pathway is required for suppressing DEP toxicity. Targeted metabolite analyses showed that DEP treatment alters the amino acid profile of yeast cells. We propose that DEP inhibits the growth of yeast cells by affecting nitrogen metabolism and discuss the implications of our findings on DEP-mediated toxic effects in humans.


Assuntos
Ácidos Ftálicos , Proteínas de Saccharomyces cerevisiae , Aminoácidos/metabolismo , Humanos , Nitrogênio/metabolismo , Proteínas Nucleares/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/toxicidade , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
BMC Biol ; 19(1): 95, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957926

RESUMO

BACKGROUND: Target of Rapamycin Complex 1 (TORC1) is a highly conserved eukaryotic protein complex that couples the presence of growth factors and nutrients in the environment with cellular proliferation. TORC1 is primarily implicated in linking amino acid levels with cellular growth in yeast and mammals. Although glucose deprivation has been shown to cause TORC1 inactivation in yeast, the precise role of TORC1 in glucose signaling and the underlying mechanisms remain unclear. RESULTS: We demonstrate that the presence of glucose in the growth medium is both necessary and sufficient for TORC1 activation. TORC1 activity increases upon addition of glucose to yeast cells growing in a non-fermentable carbon source. Conversely, shifting yeast cells from glucose to a non-fermentable carbon source reduces TORC1 activity. Analysis of transcriptomic data revealed that glucose and TORC1 co-regulate about 27% (1668/6004) of yeast genes. We demonstrate that TORC1 orchestrates the expression of glucose-responsive genes mainly via the Tap42-Sit4-Rrd1/2 pathway. To confirm TORC1's function in glucose signaling, we tested its role in spore germination, a glucose-dependent developmental state transition in yeast. TORC1 regulates the glucose-responsive genes during spore germination and inhibition of TORC1 blocks spore germination. CONCLUSIONS: Our studies indicate that a regulatory loop that involves activation of TORC1 by glucose and regulation of glucose-responsive genes by TORC1, mediates nutritional control of growth and development in yeast.


Assuntos
Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Carbono , Glucose , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Peptidilprolil Isomerase , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33604667

RESUMO

Vemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression. Sequence analysis of drug-resistant tumor cells and functional genomic screens has identified several genes that regulate vemurafenib resistance. Reactivation of mitogen-activated protein kinase (MAPK) pathway is a recurrent feature of cells that develop resistance to vemurafenib. We performed a genome-scale CRISPR-based knockout screen to identify modulators of vemurafenib resistance in melanoma cells with a highly improved CRISPR sgRNA library called Brunello. We identified 33 genes that regulate resistance to vemurafenib out of which 14 genes have not been reported before. Gene ontology enrichment analysis showed that the hit genes regulate histone modification, transcription and cell cycle. We discuss how inactivation of hit genes might confer resistance to vemurafenib and provide a framework for follow-up investigations.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Melanoma , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/genética , Mutação , Vemurafenib
6.
Chem Sci ; 11(21): 5577-5591, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874502

RESUMO

Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable via small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability. Several contemporary peptide design strategies are aimed at addressing these issues. Strategic macrocyclization through optimally placed chemical braces such as olefinic hydrocarbon crosslinks, commonly referred to as staples, may improve peptide properties by (i) restricting conformational freedom to improve target affinities, (ii) improving proteolytic resistance, and (iii) enhancing cell permeability. As a second strategy, molecules constructed entirely from d-amino acids are hyper-resistant to proteolytic cleavage, but generally lack conformational stability and membrane permeability. Since neither approach is a complete solution, we have combined these strategies to identify the first examples of all-d α-helical stapled and stitched peptides. As a template, we used a recently reported all d-linear peptide that is a potent inhibitor of the p53-Mdm2 interaction, but is devoid of cellular activity. To design both stapled and stitched all-d-peptide analogues, we used computational modelling to predict optimal staple placement. The resultant novel macrocyclic all d-peptide was determined to exhibit increased α-helicity, improved target binding, complete proteolytic stability and, most notably, cellular activity.

8.
PLoS One ; 14(6): e0218189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31181115

RESUMO

In this study, we report antifungal activity of auroramycin against Candida albicans, Candida tropicalis, and Cryptococcus neoformans. Auroramycin, a potent antimicrobial doubly glycosylated 24-membered polyene macrolactam, was previously isolated and characterized, following CRISPR-Cas9 mediated activation of a silent polyketide synthase biosynthetic gene cluster in Streptomyces rosesporous NRRL 15998. Chemogenomic profiling of auroramycin in yeast has linked its antifungal bioactivity to vacuolar transport and membrane organization. This was verified by disruption of vacuolar structure and membrane integrity of yeast cells with auroramycin treatment. Addition of salt but not sorbitol to the medium rescued the growth of auroramycin-treated yeast cells suggesting that auroramycin causes ionic stress. Furthermore, auroramycin caused hyperpolarization of the yeast plasma membrane and displayed a synergistic interaction with cationic hygromycin. Our data strongly suggest that auroramycin inhibits yeast cells by causing leakage of cations from the cytoplasm. Thus, auroramycin's mode-of-action is distinct from known antifungal polyenes, reinforcing the importance of natural products in the discovery of new anti-infectives.


Assuntos
Antifúngicos/farmacologia , Lactamas Macrocíclicas/farmacologia , Polienos/farmacologia , Leveduras/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Cátions/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Citoplasma/metabolismo , Vacúolos/metabolismo
9.
Chemosphere ; 228: 219-231, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029968

RESUMO

Integration of chemical-genetic interaction data with biological functions provides a mechanistic understanding of how toxic compounds affect cells. Mono-(2-ethylhexyl)-phthalate (MEHP) is an active metabolite of di-(2-ethylhexyl)-phthalate (DEHP), a commonly used plasticizer. MEHP adversely affects human health causing hepatotoxicity and reproductive toxicity. How MEHP affects cellular physiology is not fully understood. We utilized a genome-wide competitive fitness-based assay called 'chemogenomic profiling' to determine the genetic interaction map of MEHP in Saccharomyces cerevisiae. Gene Ontology enrichment analysis of 218 genes that provide resistance to MEHP indicated that MEHP affects seven cellular processes namely: (1) cellular amino acid biosynthetic process, (2) sterol biosynthetic process, (3) cellular transport, (4) transcriptional and translational regulation, (5) protein glycosylation, (6) cytokinesis and cell morphogenesis and (7) ionic homeostasis. We show that MEHP protects yeast cells from membrane perturbing agents such as amphotericin B, dihydrosphingosine and phytosphingosine. Moreover, we also demonstrate that MEHP compromises the integrity of the yeast plasma membrane and cell wall. Our work provides a basis for further investigation of MEHP toxicity in humans.


Assuntos
Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Vias Biossintéticas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Dietilexilftalato/metabolismo , Humanos , Ácidos Ftálicos/farmacologia , Plastificantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
10.
Sci Rep ; 9(1): 710, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679518

RESUMO

We have isolated Hypoculoside, a new glycosidic amino alcohol lipid from the fungus Acremonium sp. F2434 belonging to the order Hypocreales and determined its structure by 2D-NMR (Nuclear Magnetic Resonance) spectroscopy. Hypoculoside has antifungal, antibacterial and cytotoxic activities. Homozygous profiling (HOP) of hypoculoside in Saccharomyces cerevisiae (budding yeast) revealed that several mutants defective in vesicular trafficking and vacuolar protein transport are sensitive to hypoculoside. Staining of budding yeast cells with the styryl dye FM4-64 indicated that hypoculoside damaged the vacuolar structure. Furthermore, the propidium iodide (PI) uptake assay showed that hypoculoside disrupted the plasma membrane integrity of budding yeast cells. Interestingly, the glycosidic moiety of hypoculoside is required for its deleterious effect on growth, vacuoles and plasma membrane of budding yeast cells.


Assuntos
Acremonium/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Membrana Celular/química , Citotoxinas/farmacologia , Glicosídeos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Esfingosina/análogos & derivados , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citotoxinas/química , Genes Fúngicos , Glicosídeos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esfingosina/química , Esfingosina/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
11.
BMC Biol ; 15(1): 108, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121928

RESUMO

BACKGROUND: Protein-protein interactions (PPIs) are fundamental to the growth and survival of cells and serve as excellent targets to develop inhibitors of biological processes such as host-pathogen interactions and cancer cell proliferation. However, isolation of PPI inhibitors is extremely challenging. While several in vitro assays to screen for PPI inhibitors are available, they are often expensive, cumbersome, and require large amounts of purified protein. In contrast, limited in vivo assays are available to screen for small-molecule inhibitors of PPI. METHODS: We have engineered a yeast strain that is suitable for screening of small-molecule inhibitors of protein-protein interaction using the Yeast 2-hybrid Assay. We have optimised and validated the assay using inhibitors of the p53-Mdm2 interaction and identified a hitherto unreported putative Mdm2-binding domain in p53. RESULTS: We report a significantly improved and thoroughly validated yeast two-hybrid (Y2H) assay that can be used in a high throughput manner to screen for small-molecule PPI inhibitors. Using the p53-Mdm2 interaction to optimize the assay, we show that the p53-Mdm2 inhibitor nutlin-3 is a substrate for the yeast ATP-binding cassette (ABC) transporter Pdr5. By deleting nine ABC transporter-related genes, we generated a ABC9Δ yeast strain that is highly permeable to small molecules. In the ABC9Δ strain, p53-Mdm2 interaction inhibitors, like AMG232 and MI-773, completely inhibited the p53-Mdm2 interaction at nanomolar concentrations in the Y2H assay. In addition, we identified a conserved segment in the core DNA-binding domain of p53 that facilitates stable interaction with Mdm2 in yeast cells and in vitro. CONCLUSION: The Y2H assay can be utilized for high-throughput screening of small-molecule inhibitors of PPIs and to identify domains that stabilize PPIs.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Técnicas do Sistema de Duplo-Híbrido
12.
Sci Rep ; 6: 30397, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27455870

RESUMO

PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2A(Cdc55) prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2A(Cdc55)'s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Meiose , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
13.
BMC Genomics ; 17(Suppl 13): 1028, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155669

RESUMO

BACKGROUND: RNA is often targeted to be localized to the specific subcellular compartments. Specific localization of mRNA is believed to be an important mechanism for targeting their protein products to the locations, where their function is required. RESULTS: In this study we performed the genome wide transcriptome analysis of peroxisome preparations from the mouse liver using microarrays. We demonstrate that RNA is absent inside peroxisomes, however it is associated at their exterior via the noncovalent contacts with the membrane proteins. We detect enrichment of specific sets of transcripts in two preparations of peroxisomes, purified with different degrees of stringency. Importantly, among these were mRNAs encoding bona fide peroxisomal proteins, such as peroxins and peroxisomal matrix enzymes involved in beta-oxidation of fatty acids and bile acid biosynthesis. The top-most enriched mRNA, whose association with peroxisomes we confirm microscopically was Hmgcs1, encoding 3-hydroxy-3-methylglutaryl-CoA synthase, a crucial enzyme of cholesterol biosynthesis pathway. We observed significant representation of mRNAs encoding mitochondrial and secreted proteins in the peroxisomal fractions. CONCLUSIONS: This is a pioneer genome-wide study of localization of mRNAs to peroxisomes that provides foundation for more detailed dissection of mechanisms of RNA targeting to subcellular compartments.


Assuntos
Estudo de Associação Genômica Ampla , Peroxissomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Perfilação da Expressão Gênica , Espaço Intracelular , Espectrometria de Massas , Camundongos , Transporte de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA