Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 17336-17346, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36126321

RESUMO

In transport, the topological Hall effect (THE) presents itself as nonmonotonic features (or humps and dips) in the Hall signal and is widely interpreted as a sign of chiral spin textures, like magnetic skyrmions. However, when the anomalous Hall effect (AHE) is also present, the coexistence of two AHEs could give rise to similar artifacts, making it difficult to distinguish between genuine THE with AHE and two-component AHE. Here, we confirm genuine THE with AHE by means of transport and magneto-optical Kerr effect (MOKE) microscopy, in which magnetic skyrmions are directly observed, and find that genuine THE occurs in the transition region of the AHE. In sharp contrast, the artifact "THE" or two-component AHE occurs well beyond the saturation of the "AHE component" (under the false assumption of THE + AHE). Furthermore, we distinguish artifact "THE" from genuine THE by three methods: (1) minor loops, (2) temperature dependence, and (3) gate dependence. Minor loops of genuine THE with AHE are always within the full loop, while minor loops of the artifact "THE" may reveal a single loop that cannot fit into the "AHE component". In addition, the temperature or gate dependence of the artifact "THE" may also be accompanied by a polarity change of the "AHE component", as the nonmonotonic features vanish, while the temperature dependence of genuine THE with AHE reveals no such change. Our work may help future researchers to exercise caution and use these methods for careful examination in order to ascertain the genuine THE.

2.
J Immunol ; 208(12): 2726-2737, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688465

RESUMO

SM03, an anti-CD22 recombinant IgG1 mAb, is currently in a phase III clinical trial for the treatment of rheumatoid arthritis (NCT04312815). SM03 showed good safety and efficacy in phase I systemic lupus erythematosus and phase II moderate to severe rheumatoid arthritis clinical trials. We propose the success of SM03 as a therapeutic to systemic autoimmune diseases is through the utilization of a novel mechanism of action unique to SM03. CD22, an inhibitory coreceptor of the BCR, is a potential immunotherapeutic target against autoimmune diseases. SM03 could disturb the CD22 homomultimeric configuration through disrupting cis binding to α2,6-linked sialic acids, induce rapid internalization of CD22 from the cell surface of human B cells, and facilitate trans binding between CD22 to human autologous cells. This in turn increased the activity of the downstream immunomodulatory molecule Src homology region 2 domain-containing phosphatase 1 (SHP-1) and decreased BCR-induced NF-κB activation in human B cells and B cell proliferation. This mechanism of action gives rationale to support the significant amelioration of disease and good safety profile in clinical trials, as by enabling the "self" recognition mechanism of CD22 via trans binding to α2,6 sialic acid ligands on autologous cells, SM03 specifically restores immune tolerance of B cells to host tissues without affecting the normal B cell immune response to pathogens.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Artrite Reumatoide/terapia , Humanos , Ligantes , Ácido N-Acetilneuramínico , Polissacarídeos , Receptores de Antígenos de Linfócitos B , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Ácidos Siálicos
3.
ACS Appl Mater Interfaces ; 11(42): 39369-39375, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31603641

RESUMO

Current-induced spin-orbit torques (SOTs) enable efficient electrical manipulation of the magnetization in heterostructures with a perpendicular magnetic anisotropy through the Rashba effect or spin-Hall effect. However, in conventional SOT-based heterostructures, an in-plane bias magnetic field along the current direction is required for the deterministic switching. Here, we report that the field-free SOT switching can be achieved by introducing a wedged oxide interface between a heavy metal and a ferromagnet. The results demonstrate that the field-free SOT switching is determined by a current-induced perpendicular effective field (Hzeff) originating from the interfacial Rashba effect due to the lateral structural symmetry-breaking introduced by the wedged oxide layer. Furthermore, we show that the sign and magnitude of Hzeff exhibit a significant dependence on the interfacial oxygen content, which can be controlled by the inserted oxide thickness. Our findings provide a deeper insight into the field-free SOT switching by the interfacial Rashba effect.

4.
Sci Rep ; 6: 23956, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27050160

RESUMO

Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural asymmetry into the device. Typically, however, when a current is applied to such devices with combined vertical and lateral asymmetries, both the perpendicular field-like torque and the damping-like torque coexist, hence jointly affecting the magnetization switching behavior. Here, we study perpendicular magnetization switching driven by the combination of the perpendicular field-like and the damping-like SOTs, which exhibits deterministic switching mediated through domain wall propagation. It is demonstrated that the role of the damping-like SOT in the deterministic switching is highly dependent on the magnetization direction in the domain wall. By contrast, the perpendicular field-like SOT is solely determined by the relative orientation between the lateral structural asymmetry and the current direction, regardless of the magnetization direction in the domain wall. The experimental results further the understanding of SOTs-induced switching, with implications for spintronic devices.

5.
Nano Lett ; 16(3): 1981-8, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26848783

RESUMO

Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB-MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise to a force acting on the skyrmions, in addition to the current-induced spin-orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.

6.
Nat Nanotechnol ; 11(4): 352-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26727198

RESUMO

Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

7.
Nat Commun ; 6: 8958, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643048

RESUMO

Manipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin-orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures. The equivalency of optical and transport measurements is established by investigating a heavy-metal/ferromagnetic-metal device (Ta/CoFeB/MgO). Subsequently, SOTs are measured optically in the contrasting case of a magnetic-insulator/heavy-metal (YIG/Pt) heterostructure, where analogous transport measurements are not viable. We observe a large anti-damping torque in the YIG/Pt system, revealing its promise for spintronic device applications. Moreover, our results demonstrate that SOT physics is directly accessible by optical means in a range of materials, where transport measurements may not be possible.

8.
Nat Nanotechnol ; 9(7): 548-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813694

RESUMO

Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.

9.
Nano Lett ; 14(6): 3459-65, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24844837

RESUMO

Introducing magnetic order in a topological insulator (TI) breaks time-reversal symmetry of the surface states and can thus yield a variety of interesting physics and promises for novel spintronic devices. To date, however, magnetic effects in TIs have been demonstrated only at temperatures far below those needed for practical applications. In this work, we study the magnetic properties of Bi2Se3 surface states (SS) in the proximity of a high Tc ferrimagnetic insulator (FMI), yttrium iron garnet (YIG or Y3Fe5O12). Proximity-induced butterfly and square-shaped magnetoresistance loops are observed by magneto-transport measurements with out-of-plane and in-plane fields, respectively, and can be correlated with the magnetization of the YIG substrate. More importantly, a magnetic signal from the Bi2Se3 up to 130 K is clearly observed by magneto-optical Kerr effect measurements. Our results demonstrate the proximity-induced TI magnetism at higher temperatures, an important step toward room-temperature application of TI-based spintronic devices.

10.
Phys Rev Lett ; 110(17): 177202, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679764

RESUMO

Thermally induced domain wall motion in a magnetic insulator was observed using spatiotemporally resolved polar magneto-optical Kerr effect microscopy. The following results were found: (i) the domain wall moves towards hot regime; (ii) a threshold temperature gradient (5 K/mm), i.e., a minimal temperature gradient required to induce domain wall motion; (iii) a finite domain wall velocity outside of the region with a temperature gradient, slowly decreasing as a function of distance, which is interpreted to result from the penetration of a magnonic current into the constant temperature region; and (iv) a linear dependence of the average domain wall velocity on temperature gradient, beyond a threshold thermal bias. Our observations can be qualitatively explained using a magnonic spin transfer torque mechanism, which suggests the utility of magnonic spin transfer torque for controlling magnetization dynamics.

11.
Langmuir ; 27(14): 8735-7, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21668020

RESUMO

The application of steric blocking in surface science is exemplified by the control of surface patterns through the selective methylation of pentacenetetrone. Pentacenetetrones interact (with one another) on Cu(111) via intermolecular hydrogen bonding involving the carbonyl oxygen and the adjacent hydrogen atoms. Steric blocking of the intermolecular interaction by the successive insertion of inert methyl groups at terminal locations transforms a dense molecular pattern first into isolated double rows and eventually into single rows in a highly predictable fashion. Density functional theory modeling reveals the underlying energetics.

12.
J Am Chem Soc ; 132(39): 13578-81, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20831159

RESUMO

The diffusion temperature of molecular 'walkers', molecules that are capable of moving unidirectionally across a substrate violating its symmetry, can be tuned over a wide range utilizing extension of their aromatic backbone, insertion of a second set of substrate linkers (converting bipedal into quadrupedal species), and substitution on the ring. Density functional theory simulation of the molecular dynamics identifies the motion of the quadrupedal species as pacing (as opposed to trotting or gliding). Knowledge about the diffusion mode allows us to draw conclusions on the relevance of tunneling to the surface diffusion of polyatomic organic molecules.


Assuntos
Cobre/química , Simulação de Dinâmica Molecular , Compostos Organometálicos/química , Quinonas/química , Difusão , Compostos Organometálicos/síntese química , Oxigênio/química , Propriedades de Superfície , Temperatura , Vibração
13.
J Am Chem Soc ; 131(15): 5540-5, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19331392

RESUMO

The evolution of a low coverage of benzenethiol molecules on Cu(111) during annealing shows the prevalence of S...H hydrogen bonds involving hydrogen atoms in the ortho position. The row and pattern formation of (methylated) anthracenethiols indicates intermolecular interactions in which hydrogen atoms at the terminal position of the aromatic moiety dominate. In combination, this leads to the notion that pattern formation in classes of arenethiol molecules is each governed by optimization of the intermolecular interactions of the hydrogen atom at one particular position on the arene. This may provide a general guiding principle for the design of arenethiol films.


Assuntos
Hidrocarbonetos Aromáticos/química , Ligação de Hidrogênio , Compostos de Sulfidrila/química , Benzopirenos , Membranas Artificiais
14.
J Am Chem Soc ; 130(46): 15244-5, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18954054

RESUMO

9,10-Dithioanthracene adsorbed on Cu(111) diffuses exclusively along the high-symmetry axis of the molecule-substrate system. Further reduction of the symmetry of the system by asymmetric methylation does not reduce the symmetry of the motion although it has a substantial effect on the diffusion rate (100-fold reduction) and renders the diffusion barrier asymmetric. This is in contrast to the behavior expected of a classical particle, and it provides a direct single-molecule-scale vista on the validity of The Principle of Microscopic Reversibility first formulated by Tolman in 1924, which despite its fundamental role has attracted little visualization.

17.
Science ; 313(5789): 961-2, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16917060

RESUMO

Anthraquinone molecules self-assemble on a Cu(111) surface into a large two-dimensional honeycomb network (square root of 304 x square root of 304)R23 degrees with pore diameters of approximately 50 A. The spontaneous formation of a pattern containing pores roughly five times larger than the size of the constituent molecules is unprecedented. The network originates from a delicate balance between substrate-mediated repulsion and intermolecular attraction involving an unusual chemical motif: hydrogen bonding between a carbonyl oxygen and an aromatic hydrogen atom. Substrate-mediated long-range adsorbate-adsorbate repulsion has been observed on anisotropic surfaces and in the context of the absence of pattern formation. Its applicability for the design of tailored molecular films is explored here.

18.
J Chem Phys ; 123(20): 201102, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351233

RESUMO

We present data on the coverage and nearest-neighbor dependences of the diffusion of CO on Cu(111) by time-lapsed scanning tunneling microscope (STM) imaging. Most notable is a maximum in diffusivity of CO at a local coverage of one molecule per 20 substrate atoms and a repulsion between CO molecules upon approach closer than three adsites, which in combination with a less pronounced increase in potential energy at the diffusion transition state, leads to rapid diffusion of CO molecules around one another. We propose a new method of evaluating STM-based diffusion data that provides all parameters necessary for the modeling of the dynamics of an adsorbate population.

19.
Phys Rev Lett ; 95(16): 166101, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16241817

RESUMO

Step edges and low-symmetry faces of metal crystals can restrict the diffusive motion of adsorbates, yet they offer little flexibility with regards to the location and/or direction of the guided motion. We show inherently unidirectional motion of an organic molecule on a high-symmetry thermodynamic-equilibrium metal surface [Cu(111)]. Sequential placement of the substrate linkers of 9,10-dithioanthracene prevents it from rotating or veering off course. A combination of low temperature scanning tunneling microscopy and density functional theory simulations provide atomistic insight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA