RESUMO
Identifying the adaptive mechanisms of metastatic cancer cells remains an elusive question in the treatment of metastatic disease, particularly in pancreatic cancer (pancreatic adenocarcinoma, PDA). A loss-of-function shRNA targeted screen in metastatic-derived cells identified Gstt1, a member of the glutathione S-transferase superfamily, as uniquely required for dissemination and metastasis, but dispensable for primary tumour growth. Gstt1 is expressed in latent disseminated tumour cells (DTCs), is retained within a subpopulation of slow-cycling cells within existing metastases, and its inhibition leads to complete regression of macrometastatic tumours. This distinct Gstt1high population is highly metastatic and retains slow-cycling phenotypes, epithelial-mesenchymal transition features and DTC characteristics compared to the Gstt1low population. Mechanistic studies indicate that in this subset of cancer cells, Gstt1 maintains metastases by binding and glutathione-modifying intracellular fibronectin, in turn promoting its secretion and deposition into the metastatic microenvironment. We identified Gstt1 as a mediator of metastasis, highlighting the importance of heterogeneity and its influence on the metastatic tumour microenvironment.
Assuntos
Glutationa Transferase , Neoplasias Pancreáticas , Microambiente Tumoral , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Fibronectinas/metabolismo , Metástase Neoplásica , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/enzimologia , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Camundongos , Feminino , Camundongos Endogâmicos C57BLRESUMO
Neutrophil extracellular traps (NETs) not only counteract bacterial and fungal pathogens but can also promote thrombosis, autoimmunity, and sterile inflammation. The presence of citrullinated histones, generated by the peptidylarginine deiminase 4 (PAD4), is synonymous with NETosis and is considered independent of apoptosis. Mitochondrial- and death receptor-mediated apoptosis promote gasdermin E (GSDME)-dependent calcium mobilization and membrane permeabilization leading to histone H3 citrullination (H3Cit), nuclear DNA extrusion, and cytoplast formation. H3Cit is concentrated at the promoter in bone marrow neutrophils and redistributes in a coordinated process from promoter to intergenic and intronic regions during apoptosis. Loss of GSDME prevents nuclear and plasma membrane disruption of apoptotic neutrophils but prolongs early apoptosis-induced cellular changes to the chromatin and cytoplasmic granules. Apoptotic signaling engages PAD4 in neutrophils, establishing a cellular state that is primed for NETosis, but that occurs only upon membrane disruption by GSDME, thereby redefining the end of life for neutrophils.
Assuntos
Armadilhas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Epigênese GenéticaRESUMO
The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFß signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
Assuntos
Epigênese Genética , Histonas , Metilação , Histonas/genética , Histonas/metabolismo , Diferenciação Celular/genética , Fibroblastos/metabolismo , Linhagem da Célula/genéticaRESUMO
Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.
Assuntos
Granulócitos , Monócitos , Células Progenitoras Mieloides , Epigenoma , Epigênese Genética , Diferenciação Celular/genéticaRESUMO
Burn injury remains a significant public health issue worldwide. Metabolic derangements are a major complication of burn injury and negatively affect the clinical outcomes of severely burned patients. These metabolic aberrations include muscle wasting, hypermetabolism, hyperglycemia, hyperlactatemia, insulin resistance, and mitochondrial dysfunction. However, little is known about the impact of burn injury on the metabolome profile in skeletal muscle. We have previously shown that farnesyltransferase inhibitor (FTI) reverses burn injury-induced insulin resistance, mitochondrial dysfunction, and the Warburg effect in mouse skeletal muscle. To evaluate metabolome composition, targeted quantitative analysis was performed using capillary electrophoresis mass spectrometry in mouse skeletal muscle. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and hierarchical cluster analysis demonstrated that burn injury induced a global change in metabolome composition. FTI treatment almost completely prevented burn injury-induced alterations in metabolite levels. Pathway analysis revealed that the pathways most affected by burn injury were purine, glutathione, ß-alanine, glycine, serine, and threonine metabolism. Burn injury induced a suppressed oxidized to reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio as well as oxidative stress and adenosine triphosphate (ATP) depletion, all of which were reversed by FTI. Moreover, our data raise the possibility that burn injury may lead to increased glutaminolysis and reductive carboxylation in mouse skeletal muscle.
RESUMO
A sleepless night may feel awful in its aftermath, but sleep's revitalizing powers are substantial, perpetuating the idea that convalescent sleep is a consequence-free physiological reset. Although recent studies have shown that catch-up sleep insufficiently neutralizes the negative effects of sleep debt, the mechanisms that control prolonged effects of sleep disruption are not understood. Here, we show that sleep interruption restructures the epigenome of hematopoietic stem and progenitor cells (HSPCs) and increases their proliferation, thus reducing hematopoietic clonal diversity through accelerated genetic drift. Sleep fragmentation exerts a lasting influence on the HSPC epigenome, skewing commitment toward a myeloid fate and priming cells for exaggerated inflammatory bursts. Combining hematopoietic clonal tracking with mathematical modeling, we infer that sleep preserves clonal diversity by limiting neutral drift. In humans, sleep restriction alters the HSPC epigenome and activates hematopoiesis. These findings show that sleep slows decay of the hematopoietic system by calibrating the hematopoietic epigenome, constraining inflammatory output, and maintaining clonal diversity.
Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Células Cultivadas , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Sono/genéticaRESUMO
How mis-regulated chromatin directly impacts human immune disorders is poorly understood. Speckled Protein 140 (SP140) is an immune-restricted PHD and bromodomain-containing epigenetic "reader," and SP140 loss-of-function mutations associate with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the relevance of these mutations and mechanisms underlying SP140-driven pathogenicity remains unexplored. Using a global proteomic strategy, we identified SP140 as a repressor of topoisomerases (TOPs) that maintains heterochromatin and macrophage fate. In humans and mice, SP140 loss resulted in unleashed TOP activity, de-repression of developmentally silenced genes, and ultimately defective microbe-inducible macrophage transcriptional programs and bacterial killing that drive intestinal pathology. Pharmacological inhibition of TOP1/2 rescued these defects. Furthermore, exacerbated colitis was restored with TOP1/2 inhibitors in Sp140-/- mice, but not wild-type mice, in vivo. Collectively, we identify SP140 as a TOP repressor and reveal repurposing of TOP inhibition to reverse immune diseases driven by SP140 loss.
Assuntos
Doença de Crohn , Animais , Humanos , Camundongos , Antígenos Nucleares , Doença de Crohn/genética , Doença de Crohn/patologia , Epigênese Genética , Regulação da Expressão Gênica , Macrófagos/patologia , Proteômica , Fatores de TranscriçãoRESUMO
Lipophilic but not hydrophilic statins have been shown to be associated with reduced risk for hepatocellular carcinoma (HCC) in patients with chronic viral hepatitis. We investigated differential actions of lipophilic and hydrophilic statins and their ability to modulate a clinical prognostic liver signature (PLS) predicting HCC risk in patients with liver disease. Hepatitis C virus (HCV)-infected Huh7.5.1 cells, recently developed as a model to screen HCC chemopreventive agents, were treated with lipophilic statins (atorvastatin and simvastatin) and hydrophilic statins (rosuvastatin and pravastatin), and then analyzed by RNA sequencing and PLS. Lipophilic statins, particularly atorvastatin, more significantly suppressed the HCV-induced high-risk pattern of PLS and genes in YAP and AKT pathway implicated in fibrogenesis and carcinogenesis, compared with the hydrophilic statins. While atorvastatin inhibited YAP activation through the mevalonate pathway, the distinctive AKT inhibition of atorvastatin was mediated by stabilizing truncated retinoid X receptor alpha, which has been known to enhance AKT activation, representing a target for HCC chemoprevention. In addition, atorvastatin modulated the high-risk PLS in an in vitro model of nonalcoholic fatty liver disease (NAFLD). Conclusion: Atorvastatin distinctively inhibits YAP and AKT activation, which are biologically implicated in HCC development, and attenuates a high-risk PLS in an in vitro model of HCV infection and NAFLD. These findings suggest that atorvastatin is the most potent statin to reduce HCC risk in patients with viral and metabolic liver diseases.
Assuntos
Carcinoma Hepatocelular , Hepatite C , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Atorvastatina/farmacologia , Carcinoma Hepatocelular/genética , Hepatite C/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.
Assuntos
Encéfalo , Medo , Leucócitos , Neurônios Motores , Vias Neurais , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/fisiologia , COVID-19/imunologia , Quimiocinas/imunologia , Suscetibilidade a Doenças , Medo/fisiologia , Glucocorticoides/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Optogenética , Infecções por Orthomyxoviridae/imunologia , Núcleo Hipotalâmico Paraventricular/fisiologia , SARS-CoV-2/imunologia , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologiaRESUMO
Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found that eukaryotic viruses and bacteriophages (collectively, the virome), enriched from non-IBD, noninflamed human colon resections, actively elicited atypical anti-inflammatory innate immune programs. Conversely, ulcerative colitis or Crohn's disease colon resection viromes provoked inflammation, which was successfully dampened by non-IBD viromes. The IBD colon tissue virome was perturbed, including an increase in the enterovirus B species of eukaryotic picornaviruses, not previously detected in fecal virome studies. Mice humanized with non-IBD colon tissue viromes were protected from intestinal inflammation, whereas IBD virome mice exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD patient-derived intestinal epithelial cells bearing loss-of-function mutations within virus sensor MDA5 when exposed to viromes. Our results demonstrate that innate recognition of IBD or non-IBD human viromes autonomously influences intestinal homeostasis and disease phenotypes. Thus, perturbations in the intestinal virome, or an altered ability to sense the virome due to genetic variation, contribute to the induction of IBD. Harnessing the virome may offer therapeutic and biomarker potential.
Assuntos
Enterovirus , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Vírus , Animais , Humanos , Imunomodulação , Inflamação , Camundongos , FenótipoRESUMO
Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors (TFs) in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of TFs regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the TF Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital two-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell cycle, fatty acid oxidation, and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.
In humans and other mammals, a region of the brain known as the hippocampus plays important roles in memory. New experiences guide cells in the hippocampus known as radial-glial neural stem cells (RGLs) to divide to make new neurons and other types of cells involved in forming memories. Each time an RGL divides, it can choose to divide asymmetrically to maintain a copy of itself and make a new cell of another type, or divide symmetrically (a process known as symmetric self-renewal) to produce two RGLs. Symmetric self-renewal helps to restore and replenish the pool of stem cells in the hippocampus that are lost due to injury or age, allowing us to continue making new neurons. Proteins known as transcription factors are believed to control how RGLs divide. Previous studies have identified several transcription factors that regulate the RGLs splitting asymmetrically to make neurons and other cells. But the identities of the transcription factors that regulate symmetric self-renewal in the adult hippocampus have remained elusive. Here, Guo et al. searched for transcription factors that regulate symmetric self-renewal of RGLs in mice. The experiments found that RGLs that are resting and not dividing (referred to as 'quiescent') have higher levels of a transcription factor called Klf9 than RGLs that are actively dividing. Loss of the gene encoding Klf9 triggered quiescent RGLs to start dividing, and further experiments showed that Klf9 directly inhibited symmetric self-renewal. Guo et al. then used an approach called in vivo translational profiling to generate a blueprint that revealed new insights into the molecular processes involved in this symmetric division. These findings pave the way for researchers to develop strategies that may expand the numbers of stem cells in the hippocampus. This could eventually be used to help replenish brain circuits with neurons and improve the memory of individuals with Alzheimer's disease or other conditions that cause memory loss.
Assuntos
Proliferação de Células , Hipocampo/fisiologia , Células-Tronco Neurais/fisiologia , Transcrição Gênica , Animais , Crescimento Celular , Feminino , Masculino , RatosRESUMO
MYC upregulation is associated with multidrug refractory disease in patients with multiple myeloma (MM). We, isolated patient-derived MM cells with high MYC expression and discovered that NCOR2 was down-regulated in these cells. NCOR2 is a transcriptional coregulatory protein and its role in MM remains unknown. To define the role of NCOR2 in MM, we created NCOR2 knockout human myeloma cell lines and demonstrated that NCOR2 knockout led to high MYC expression. Furthermore, NCOR2 knockout conferred resistance to pomalidomide, BET and HDAC inhibitors, independent of Cereblon (CRBN), indicating high MYC expression as a cause of multidrug resistance. Moreover, NCOR2 interacted with the nucleosome remodeling and deacetylase (NuRD) complex and repressed the expression of CD180 by directly binding to its promoter and inducing MYC expression. Next, we generated lenalidomide-resistant and pomalidomide-resistant human myeloma cell lines. Whole-exome sequencing revealed that these cell lines acquired the same exonic mutations of NCOR2. These cell lines showed NCOR2 downregulation and MYC upregulation independent of CRBN and demonstrated resistance to BET and HDAC inhibitors. Our findings reveal a novel CRBN independent molecular mechanism associated with drug resistance. Low NCOR2 expression can serve as a potential biomarker for drug resistance and needs further validation in larger prospective studies.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Correpressor 2 de Receptor Nuclear/genética , Proteínas Proto-Oncogênicas c-myc/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Inativação de Genes , Inibidores de Histona Desacetilases/farmacologia , Humanos , Talidomida/análogos & derivados , Talidomida/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
We analyzed plasma levels of interferons (IFNs) and cytokines, and expression of IFN-stimulated genes in peripheral blood mononuclear cells in patients with coronavirus disease 2019 of varying disease severity. Patients hospitalized with mild disease exhibited transient type I IFN responses, while intensive care unit patients had prolonged type I IFN responses. Type II IFN responses were compromised in intensive care unit patients. Type III IFN responses were induced in the early phase of infection, even in convalescent patients. These results highlight the importance of early type I and III IFN responses in controlling coronavirus disease 2019 progression.
Assuntos
COVID-19/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Interferons/imunologia , COVID-19/sangue , Quimiocinas/sangue , Citocinas/sangue , Humanos , Interferon Tipo I/sangue , Interferon Tipo I/genética , Interferon gama/sangue , Interferon gama/genética , Interferons/sangue , Leucócitos Mononucleares/imunologia , SARS-CoV-2/isolamento & purificação , Interferon lambdaRESUMO
Communication within the glial cell ecosystem is essential for neuronal and brain health1-3. The influence of glial cells on the accumulation and clearance of ß-amyloid (Aß) and neurofibrillary tau in the brains of individuals with Alzheimer's disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) programs microglia to ameliorate the pathology of AD. Upon recognition of Aß deposits, microglia increase their expression of IL-3Rα-the specific receptor for IL-3 (also known as CD123)-making them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional programming of microglia to endow them with an acute immune response program, enhanced motility, and the capacity to cluster and clear aggregates of Aß and tau. These changes restrict AD pathology and cognitive decline. Our findings identify IL-3 as a key mediator of astrocyte-microglia cross-talk and a node for therapeutic intervention in AD.
Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/fisiologia , Interleucina-3/metabolismo , Microglia/fisiologia , Animais , Comunicação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/fisiologiaRESUMO
BACKGROUND: The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis modulates critical metabolic pathways; however, little is known regarding effects of augmenting pulsatile GH secretion on immune function in humans. This study used proteomics and gene set enrichment analysis to assess effects of a GH releasing hormone (GHRH) analog, tesamorelin, on circulating immune markers and liver tissue in people with human immunodeficiency virus (HIV) (PWH) and nonalcoholic fatty liver disease (NAFLD). METHODS: 92 biomarkers associated with immunity, chemotaxis, and metabolism were measured in plasma samples from 61 PWH with NAFLD who participated in a double-blind, randomized trial of tesamorelin versus placebo for 12 months. Gene set enrichment analysis was performed on serial liver biopsies targeted to immune pathways. RESULTS: Tesamorelin, compared to placebo, decreased interconnected proteins related to cytotoxic T-cell and monocyte activation. Circulating concentrations of 13 proteins were significantly decreased, and no proteins increased, by tesamorelin. These included 4 chemokines (CCL3, CCL4, CCL13 [MCP4], IL8 [CXCL8]), 2 cytokines (IL-10 and CSF-1), and 4 T-cell associated molecules (CD8A, CRTAM, GZMA, ADGRG1), as well as ARG1, Gal-9, and HGF. Network analysis indicated close interaction among the gene pathways responsible for these proteins, with imputational analyses suggesting down-regulation of a closely related cluster of immune pathways. Targeted transcriptomics using liver tissue confirmed a significant end-organ signal of down-regulated immune activation pathways. CONCLUSIONS: Long-term treatment with a GHRH analog reduced markers of T-cell and monocyte/macrophage activity, suggesting that augmentation of the GH axis may ameliorate immune activation in an HIV population with metabolic dysregulation, systemic and end organ inflammation. Clinical Trials Registration. NCT02196831.
Assuntos
Infecções por HIV , Hepatopatia Gordurosa não Alcoólica , Biomarcadores , Método Duplo-Cego , Hormônio Liberador de Hormônio do Crescimento , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológicoRESUMO
We analyzed the plasma levels of interferons and cytokines, and the expression of interferon-stimulated genes in peripheral blood mononuclear cells in COVID-19 patients with different disease severity. Mild patients exhibited transient type I interferon responses, while ICU patients had prolonged type I interferon responses with hyper-inflammation mediated by interferon regulatory factor 1. Type II interferon responses were compromised in ICU patients. Type III interferon responses were induced in the early phase of SARS-CoV-2 infection, even in convalescent patients. These results highlight the importance of type I and III interferon responses during the early phase of infection in controlling COVID-19 progression.
RESUMO
The thymus is a primary lymphoid organ necessary for optimal T cell development. Here, we show that liver X receptors (LXRs)-a class of nuclear receptors and transcription factors with diverse functions in metabolism and immunity-critically contribute to thymic integrity and function. LXRαß-deficient mice develop a fatty, rapidly involuting thymus and acquire a shrunken and prematurely immunoinhibitory peripheral T cell repertoire. LXRαß's functions are cell specific, and the resulting phenotypes are mutually independent. Although thymic macrophages require LXRαß for cholesterol efflux, thymic epithelial cells (TECs) use LXRαß for self-renewal and thymocytes for negative selection. Consequently, TEC-derived LXRαß protects against homeostatic premature involution and orchestrates thymic regeneration following stress, while thymocyte-derived LXRαß limits cell disposal during negative selection and confers heightened sensitivity to experimental autoimmune encephalomyelitis. These results identify three distinct but complementary mechanisms by which LXRαß governs T lymphocyte education and illuminate LXRαß's indispensable roles in adaptive immunity.
Assuntos
Receptores X do Fígado/fisiologia , Fígado/metabolismo , Linfócitos T/fisiologia , Timo/fisiologia , Imunidade Adaptativa , Animais , Apoptose , Feminino , Citometria de Fluxo , Homeostase , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/metabolismo , Timo/metabolismoRESUMO
BACKGROUND: People with human immunodeficiency virus (PWH) demonstrate increased atherosclerotic cardiovascular disease (ASCVD). Statins are being studied to prevent ASCVD in human immunodeficiency virus (HIV), but little is known regarding the effects of statins on a broad range of inflammatory and cardiovascular proteins in this population. METHODS: We used a highly specific discovery proteomic approach (Protein Extension Assay), to determine statin effects on over 350 plasma proteins in relevant ASCVD pathways among HIV and non-HIV groups. Responses to pitavastatin calcium were assessed in 89 PWH in the INTREPID trial and 46 non-HIV participants with features of central adiposity and insulin resistance. History of cardiovascular disease was exclusionary for both studies. RESULTS: Among participants with HIV, PCOLCE (enzymatic cleavage of type I procollagen) significantly increased after pitavastatin therapy and PLA2G7 (systemic marker of arterial inflammation) decreased. Among participants without HIV, integrin subunit alpha M (integrin adhesive function) and defensin alpha-1 (neutrophil function) increased after pitavastatin therapy and PLA2G7 decreased. At baseline, comparing participants with and without HIV, differentially expressed proteins included proteins involved in platelet and endothelial function and immune activation. CONCLUSIONS: Pitavastatin affected proteins important to platelet and endothelial function and immune activation, and effects differed to a degree within PWH and participants without HIV.
Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas , Infecções por HIV/sangue , Infecções por HIV/virologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Proteoma , Proteômica , Idoso , Idoso de 80 Anos ou mais , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Estudos de Casos e Controles , Feminino , Infecções por HIV/complicações , Infecções por HIV/imunologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Projetos de Pesquisa , Carga ViralRESUMO
BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated. RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples. CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.
Assuntos
Variação Genética , Genoma Humano , Animais , Bornéu/etnologia , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Hominidae/genética , Humanos , Mutação INDEL , Malásia/etnologia , Taxa de MutaçãoRESUMO
PURPOSE: Bladder cancer recurrence following cystectomy remains a significant cause of bladder cancer specific mortality. Residual cancer cells contribute to cancer recurrence due to tumor spillage or undetectable preexisting micrometastatic tumor clones. We detected and quantified residual cancer cells in pelvic washing using ultradeep targeted sequencing. We compared the levels of residual cancer cells with clinical variables and cancer recurrence. MATERIALS AND METHODS: The primary tumor specimen was available in 17 patients who underwent robot-assisted radical cystectomy. All tumors had negative surgical margins. Pelvic washes and blood were collected intraoperatively before and after robot-assisted radical cystectomy, after pelvic lymph node dissection and in the suction fluid collected during the procedure. Two-step sequencing, including whole exome sequencing followed by ultradeep targeted sequencing (× greater than 50,000), was done to quantify residual cancer cells in each sample. Eight patients were excluded from study due to sample quality issues. The final analysis cohort comprised 9 patients. The residual cancer cell level was quantified for each sample as the relative cancer cell fraction and compared between time points. The peak relative cancer cell fraction of each patient was correlated with clinical and pathological variables. RESULTS: Residual cancer cells were detected in approximately half of the pelvic washing specimens during or after but not before robot-assisted radical cystectomy. Higher residual cancer cell levels were associated with aggressive variant histology and cancer recurrence. Verifying the feasibility of using residual cancer cells as a novel biomarker for recurrence requires larger cohorts. CONCLUSIONS: Detection of residual cancer cells in intraoperative peritoneal washes of patients with bladder cancer who undergo radical cystectomy may represent a robust biomarker of tumor aggressiveness and metastatic potential.