Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25207, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322922

RESUMO

Wing measurement is an important parameter in many entomological studies. However, the methods of measuring wings vary with studies, and a gold standard method was not available for this procedure. This in turn limits researchers from confidently comparing their research findings with published data collected by other means of measurement. This study investigated the interchangeability of three commonly available methods for wing measurement, namely the calliper method, stereomicroscope-assisted photography method, and digital microscope-assisted photography method, using the laboratory colony of Aedes aegypti. It was found that the calliper method and the photography-based methods yielded similar results, hence the good interchangeability of these methods. Nevertheless, the digital microscope-assisted photography method yielded more accurate measurements, due to the higher resolution of the captured photos, and minimal technical bias during the data collection, as compared to the calliper-based and stereomicroscope-assisted photography methods. This study served as a reference for researchers to select the most suitable measurement method in future studies.

2.
Front Microbiol ; 14: 1135977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025644

RESUMO

The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.

3.
Pathog Glob Health ; 116(6): 356-364, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35287548

RESUMO

Information on the mosquito species that transmit canine filariosis is scanty. Hence, an experimental study was conducted to identify the potential vectors responsible for the transmission of D. immitis Leidy and B. pahangi Buckley & Edeson. A total of 367 mosquitoes belonging to six species containing both laboratory and field strains (i.e. Aedes togoi Theobald, Aedes aegypti Linnaeus, Aedes albopictus Skuse, Culex quinquefasciatus Say, Culex vishnui Theobald and Anopheles dirus Peyton & Harrison) were used in this study. All mosquitoes were artificially fed on either D. immitis or B. pahangi microfilariae (mfs) infected blood by using the Hemotek™ membrane feeding system. Out of 367 mosquitoes, 228 (64.9%) were fully engorged. After feeding on D. immitis (20%) and B. pahangi (33%) mfs positive blood, the mortality rates for Cx. quinquefasciatus were found to be slightly lower than that of other species of mosquitoes. On the other hand, majority of An. dirus were found to be incapable to withstand the infection of mfs as the mortality rates were relatively high (D. immitis = 71.4%; B. pahangi = 100.0%). Brugia pahangi was detected in Ae. togoi and Cx. quinquefasciatus with infection rates of 50% and 25%, respectively. Aedes togoi was the only species infected with D. immitis with an infection rate of 69%. Our results showed that Ae. togoi was an excellent experimental vector for both D. immitis and B. pahangi. This study also documented the observation of B. pahangi, for the first time in the head region of Cx. quinquefasciatus under a laboratory setting.


Assuntos
Aedes , Brugia pahangi , Culex , Culicidae , Dirofilaria immitis , Espirurídios , Animais , Cães , Larva , Mosquitos Vetores
4.
Parasit Vectors ; 13(1): 414, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787974

RESUMO

BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes. METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software. RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar. CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.


Assuntos
Culicidae/microbiologia , Wolbachia , Aedes/microbiologia , Animais , Anopheles/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Culex/microbiologia , Genes Bacterianos , Controle de Insetos , Malásia/epidemiologia , Malvaceae/microbiologia , Mosquitos Vetores/microbiologia , Patologia Molecular , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Doenças Transmitidas por Vetores/prevenção & controle , Wolbachia/genética , Wolbachia/isolamento & purificação
5.
Acta Trop ; 201: 105207, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31586449

RESUMO

A gynandromorph of Culex sitiens Wiedemann (Diptera: Culicidae) was attracted to a human during a mosquito surveillance programme conducted in Kuala Lipis, Pahang, Malaysia on July 20, 2019. Gynandromorphism was observed in antennae, maxillary palps, legs and wings of the specimen, with distinct male characters on the left and female characters on the right, though the left maxillary palp is slightly shorter than the proboscis of a typical male. The abdomen, however, displays well-developed male genitalia. This study represents the first report of oblique gynandromorphism in Cx. sitiens, one of the vectors of Japanese encephalitis in Asia.


Assuntos
Culex/classificação , Culex/genética , Encefalite Japonesa/transmissão , Mosquitos Vetores/genética , Comportamento Sexual , Animais , Feminino , Genitália Masculina , Genótipo , Humanos , Malásia , Masculino , Fenótipo
6.
Parasit Vectors ; 12(1): 236, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097010

RESUMO

BACKGROUND: Dengue is a serious public health problem worldwide, including in Selangor, Malaysia. Being an important vector of dengue virus, Aedes aegypti are subjected to control measures which rely heavily on the usage of insecticides. Evidently, insecticide resistance in Ae. aegypti, which arise from several different point mutations within the voltage-gated sodium channel genes, has been documented in many countries. Thus, this robust study was conducted in all nine districts of Selangor to understand the mechanisms of resistance to various insecticides in Ae. aegypti. Mosquitoes were collected from dengue epidemic and non-dengue outbreak areas in Selangor. METHODS: Using the Center for Disease Control and Prevention (CDC) bottle assays, the insecticide resistance status of nine different Ae. aegypti strains from Selangor was accessed. Synergism tests and biochemical assays were conducted to further understand the metabolic mechanisms of insecticide resistance. Polymerase chain reaction (PCR) amplification and sequencing of the IIP-IIS6 as well as IIIS4-IIIS6 regions of the sodium channel gene were performed to enable comparisons between susceptible and resistant mosquito strains. Additionally, genomic DNA was used for allele-specific PCR (AS-PCR) genotyping of the gene to detect the presence of F1534C, V1016G and S989P mutations. RESULTS: Adult female Ae. aegypti from various locations were susceptible to malathion and propoxur. However, they exhibited different levels of resistance against dichlorodiphenyltrichloroethane (DDT) and pyrethroids. The results of synergism tests and biochemical assays indicated that the mixed functions of oxidases and glutathione S-transferases contributed to the DDT and pyrethroid resistance observed in the present study. Besides detecting three single kdr mutations, namely F1534C, V1016G and S989P, co-occurrence of homozygous V1016G/S989P (double allele) and F1534C/V1016G/S989P (triple allele) mutations were also found in Ae. aegypti. As per the results, the three kdr mutations had positive correlations with the expressions of resistance to DDT and pyrethroids. CONCLUSIONS: In view of the above outcomes, it is important to seek new tools for vector management instead of merely relying on insecticides. If the latter must be used, regular monitoring of insecticide resistance should also be carried out at all dengue epidemic areas. Since the eggs of Ae. aegypti can be easily transferred from one location to another, it is probable that insecticide-resistant Ae. aegypti can be found at non-dengue outbreak sites as well.


Assuntos
Aedes/enzimologia , Aedes/genética , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Alelos , Animais , Dengue/transmissão , Feminino , Genótipo , Glutationa Transferase/genética , Proteínas de Insetos/genética , Inseticidas , Malation , Malásia , Mosquitos Vetores/enzimologia , Mutação , Oxirredutases/genética , Reação em Cadeia da Polimerase , Piretrinas , Análise de Sequência de DNA , Canais de Sódio/genética
7.
Infect Genet Evol ; 73: 26-32, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30999059

RESUMO

We explored and constructed haplotype network for simian malaria species: Plasmodium knowlesi, P. cynomolgi and P. inui aiming to understand the transmission dynamics between mosquitoes, humans and macaques. Mosquitoes were collected from villages in an area where zoonotic malaria is prevalent. PCR analysis confirmed Anopheles balabacensis as the main vector for macaque parasites, moreover nearly 60% of the mosquitoes harboured more than one Plasmodium species. Fragments of the A-type small subunit ribosomal RNA (SS rRNA) amplified from salivary gland sporozoites, and equivalent sequences obtained from GenBank were used to construct haplotype networks. The patterns were consistent with the presence of geographically distinct populations for P. inui and P. cynomolgi, and with three discrete P. knowlesi populations. This study provides a preliminary snapshot of the structure of these populations, that was insufficient to answer our aim. Thus, collection of parasites from their various hosts and over time, associated with a systematic analysis of a set of genetical loci is strongly advocated in order to obtain a clear picture of the parasite population and the flow between different hosts. This is important to devise measures that will minimise the risk of transmission to humans, because zoonotic malaria impedes malaria elimination.


Assuntos
Variação Genética , Malária/veterinária , Mosquitos Vetores/parasitologia , Plasmodium/classificação , Plasmodium/genética , Vertebrados/parasitologia , Zoonoses/parasitologia , Animais , Genes de RNAr , Humanos , Filogenia , Infecções Protozoárias em Animais/parasitologia
8.
Acta Trop ; 185: 115-126, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29758171

RESUMO

The resistance status of Selangor Aedes aegypti (Linnaeus) larvae against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Aedes aegypti were susceptible against temephos (organophosphate), although resistance (RR50 = 0.21-2.64) may be developing. The insecticides susceptibility status of Ae. aegypti larvae were found heterogeneous among the different study sites. Results showed that Ae. aegypti larvae from Klang, Sabak Bernam and Sepang were susceptible against all insecticides tested. However, other study sites exhibited low to high resistance against all pyrethroids (RR50 = 1.19-32.16). Overall, the application of synergists ethacrynic acid, S.S.S.- tributylphosphorotrithioate and piperonyl butoxide increased the toxicity of insecticides investigated. However, the application failed to increase the mortality to susceptible level (>97%) for certain populations, therefore there are chances of alteration of target site resistance involved. Biochemical assays revealed that α-esterase, (Gombak, Kuala Langat, Kuala Selangor and Sabak Bernam strains) ß-esterase (Klang and Sabak Bernam strains), acetylcholinesterase (Kuala Selangor and Sabak Bernam strains), glutathione-S-transferase (Kuala Selangor and Sabak Bernam strains) and mono-oxygenases (Gombak, Hulu Langat, Hulu Selangor and Kuala Langat strains) were elevated. Spearman rank-order correlation indicated a significant correlation between resistance ratios of: DDT and deltamethrin (r = 0.683, P = 0.042), cyfluthrin and deltamethrin (r = 0.867, P =0.002), cyflyuthrin and lambdacyhalothrin (r = 0.800, P =0.010), cyfluthrin and permethrin (r = 0.770, P =0.015) deltamethrin and permethrin (r = 0.803, P =0.088), propoxur and malathion (r = 0.867, P = 0.002), malathion and temephos (r = 0.800, P = 0.010), etofenprox and MFO enzyme (r = 0.667, P =0.050). The current study provides baseline information for vector control programs conducted by local authorities. The susceptibility status of Ae. aegypti should be monitored sporadically to ensure the effectiveness of current vector control strategy in Selangor.


Assuntos
Aedes/efeitos dos fármacos , Dengue/epidemiologia , Surtos de Doenças , Resistência a Inseticidas , Inseticidas , Larva/efeitos dos fármacos , Organofosfatos , Piretrinas , Acetilcolinesterase/metabolismo , Aedes/enzimologia , Animais , Carbamatos , Esterases/metabolismo , Feminino , Glutationa Transferase/metabolismo , Hidrocarbonetos Clorados , Larva/enzimologia , Malásia/epidemiologia , Oxigenases de Função Mista/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Sinergistas de Praguicidas
9.
Trop Med Int Health ; 22(9): 1154-1165, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28653334

RESUMO

OBJECTIVE: To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes. METHODS: Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries. RESULTS: Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4. CONCLUSION: Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status.


Assuntos
Aedes , Vírus da Dengue/patogenicidade , Dengue/transmissão , Insetos Vetores , Sorogrupo , Replicação Viral , Wolbachia , Aedes/microbiologia , Aedes/virologia , Animais , Infecções Bacterianas/complicações , Dengue/virologia , Vírus da Dengue/classificação , Humanos , Reação em Cadeia da Polimerase
10.
Acta Trop ; 148: 38-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899523

RESUMO

Wolbachia are maternally transmitted bacteria found in most arthropods and nematodes, but little is known about their distribution and reproductive dynamics in the Malaysian dengue vector Aedes albopictus. In this study, polymerase chain reaction (PCR) was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the country using wsp specific primers. Ae. albopictus had Wolbachia infection ranging from 60 to 100%. No sequence diversity of wsp gene was found within all wAlbA and wAlbB sequences. Our findings suggest that Wolbachia infection amongst the Malaysian Ae. albopictus were not homogenously distributed in all districts in Malaysia. The presence of Wolbachia in different organs of Ae. albopictus was also determined. Wolbachia were only found in the ovaries and midguts of the mosquitoes, while absent in the salivary glands. The effects of Wolbachia on Ae. albopictus fecundity, longevity and egg viability were studied using infected and uninfected colonies. The removal of Wolbachia from Ae. albopictus resulted in reduced fecundity, longevity and egg viability, thus. Wolbachia seem to play a vital role in Ae. albopictus reproductive system.


Assuntos
Aedes/microbiologia , Dengue/epidemiologia , Insetos Vetores/microbiologia , Wolbachia/genética , Animais , Dengue/transmissão , Variação Genética , Genótipo , Humanos , Malásia/epidemiologia , Reação em Cadeia da Polimerase , Wolbachia/fisiologia
11.
Parasit Vectors ; 7: 436, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25223878

RESUMO

BACKGROUND: While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria. METHODS: Cases of knowlesi/malariae malaria in the Hulu Selangor district were retrospectively reviewed and analyzed from 2009 to 2013. Mosquitoes were collected from areas where cases occurred in order to determine the vectors. Leucosphyrus group of mosquitoes were genetically characterized targeting the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit I (CO1). In addition, temporal and spatial analyses were carried out for human cases and vectors. RESULTS: Of the 100 microscopy diagnosed P. knowlesi/P. malariae cases over the 5 year period in the Hulu Selangor district, there was predominance of P. knowlesi/P. malariae cases among the young adults (ages 20-39 years; 67 cases; 67%). The majority of the infected people were involved in occupations related to agriculture and forestry (51; 51%). No death was recorded in all these cases.Five hundred and thirty five mosquitoes belonging to 14 species were obtained during the study. Anopheles maculatus was the predominant species (49.5%) followed by Anopheles letifer (13.1%) and Anopheles introlatus (11.6%). Molecular and phylogenetic analysis confirmed the species of the Leucosphyrus group to be An. introlatus. In the present study, only An. introlatus was positive for oocysts. Kernel Density analysis showed that P. knowlesi hotspot areas overlapped with areas where the infected An. introlatus was discovered. This further strengthens the hypothesis that An. introlatusis is the vector for P. knowlesi in the Hulu Selangor district.Unless more information is obtained on the vectors as well as macaque involved in the transmission, it will be difficult to plan effective control strategies. The utilization of modern analytical tools such as GIS (Geographic Information System) is crucial in estimating hotspot areas for targeted control strategies. CONCLUSIONS: Anopheles introlatus has been incriminated as vector of P. knowlesi in Hulu Selangor. The cases of P. knowlesi are on the increase and further research using molecular techniques is needed.


Assuntos
Anopheles/parasitologia , Doenças Transmissíveis Emergentes/transmissão , Insetos Vetores/parasitologia , Malária/transmissão , Plasmodium knowlesi/isolamento & purificação , Adulto , Animais , Anopheles/classificação , Criança , Pré-Escolar , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/parasitologia , Feminino , Geografia , Humanos , Insetos Vetores/classificação , Malária/epidemiologia , Malária/parasitologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Plasmodium knowlesi/genética , Saúde Pública , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA