Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2307950, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772325

RESUMO

The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.

2.
Nat Commun ; 13(1): 3315, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676294

RESUMO

Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it's difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation.

3.
Environ Sci Technol ; 56(1): 535-545, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935352

RESUMO

Membrane distillation (MD) is a promising technology for the treatment of high salinity wastewater using a hydrophobic membrane; however, the occurrence of wetting due to surfactants in polluted or low surface tension liquid impedes MD application. Common monitoring approaches, such as conductivity and flux measurement, cannot explain the wetting phenomenon that occurs during the wetting process in detail. Recently, impedance spectroscopy has been proposed for early wetting detection, as it depends on the change of water/air composition in the membrane pores. An earlier and larger variation was observed with precise signal detection. In this study, we proposed an analytical approach to estimate the wetting front, which is the average feed intrusion distance, by the impedance value recorded in real-time operation. With this proposed approach, the wetting mechanism in the presence of a surfactant and the effect of pore size on a commercial polyvinylidene fluoride membrane could be quantified, which cannot be explained in detail using conductivity and flux measurements.


Assuntos
Destilação , Purificação da Água , Espectroscopia Dielétrica , Membranas Artificiais , Purificação da Água/métodos , Molhabilidade
4.
Water Res ; 205: 117668, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597989

RESUMO

Membrane fouling, which is caused by the deposition of particles on the membrane surface or pores, reduces system performance in membrane distillation (MD) applications, resulting in increased operational costs, poor recovery, and system failure. Optical Coherence Tomography enables in-situ foulant monitoring in both 2D and 3D, however, the 2D images can only determine fouling layer thickness in severe fouling. Therefore, in this study, an advanced 3D imaging analysis technique using intensity range filters was proposed to quantify fouling layer formation during MD through the use of a single 3D image. This approach not only reduces computational power requirements, but also successfully separated the fouling layer from the membrane at the microscale. Thus, the thickness, fouling index, and fouling layer coverage can be evaluated in real time. To test this approach, Polyvinylidene fluoride (C-PVDF) and polytetrafluoroethylene (C-PTFE) membranes were used to treat a feed consisting of industrial textile wastewater. Thin and disperse foulants was observed on the C-PTFE, with a 22 µm thick fouling layer which could not be observed using 2D images after 24 h. Moreover, the C-PTFE demonstrated better antifouling ability than the C-PVDF as demonstrated by its lower fouling index, which was also supported by surface energy characterization. This work demonstrates the significant potential of 3D imagery in the long-term monitoring of membrane fouling process to improve membrane antifouling performance in MD applications, which can lead to lowered operational costs and improved system stability.


Assuntos
Destilação , Purificação da Água , Membranas Artificiais , Têxteis , Tomografia de Coerência Óptica , Águas Residuárias
5.
ACS Appl Mater Interfaces ; 13(3): 3762-3770, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33463155

RESUMO

Photothermal desalination is a promising approach for seawater purification by harvesting solar energy. Titanium carbide (Ti3C2Tx MXene) membranes have been regarded as potential materials for photothermal desalination by virtue of their excellent light-to-heat conversion. However, achieving a well-balanced synergy between high evaporation rate and good salt resistance remains a significant challenge due to their limited solar absorption and inferior stability. Herein, we report a self-assembled flexible porphyrin-Ti3C2Tx MXene Janus membrane (Janus PMX membrane) for dual-functional enabled photothermal desalination. The self-assembly of porphyrin on MXene not only effectively creates a favorable hydrophobic surface but also simultaneously enables efficient solar utilization. The significant interactions and charge redistribution between MXene and porphyrin lead to a stable hydrophobic/hydrophilic Janus structure with synergistically enhanced photothermal conversion. As a result, the Janus PMX membrane demonstrates highly efficient water pumping, heat localization, vapor generation, and salt resistance during photothermal desalination. This work presents an effective and facile strategy toward advancing a well-performing MXene membrane for efficient seawater desalination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA