Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 20(1): 2368288, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38953250

RESUMO

Many pathogens enter the host through mucosal sites. Thus, interfering with pathogen entry through local neutralization at mucosal sites therefore is an effective strategy for preventing disease. Mucosally administered vaccines have the potential to induce protective immune responses at mucosal sites. This manuscript delves into some of the latest developments in mucosal vaccination, particularly focusing on advancements in adjuvant technologies and the role of these adjuvants in enhancing vaccine efficacy against respiratory pathogens. It highlights the anatomical and immunological complexities of the respiratory mucosal immune system, emphasizing the significance of mucosal secretory IgA and tissue-resident memory T cells in local immune responses. We further discuss the differences between immune responses induced through traditional parenteral vaccination approaches vs. mucosal administration strategies, and explore the protective advantages offered by immunization through mucosal routes.


Assuntos
Imunidade nas Mucosas , Mucosa Respiratória , Humanos , Mucosa Respiratória/imunologia , Animais , Vacinas/imunologia , Vacinas/administração & dosagem , Administração através da Mucosa , Adjuvantes de Vacinas , Vacinação/métodos , Adjuvantes Imunológicos/administração & dosagem , Infecções Respiratórias/imunologia , Infecções Respiratórias/prevenção & controle , Células T de Memória/imunologia , Imunoglobulina A Secretora/imunologia
2.
iScience ; 27(7): 110103, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39045100

RESUMO

Retinoic acid (RA), controls the immunoregulatory functions of many immune cells, including dendritic cells (DCs), and is important for mucosal immunity. In DCs, RA regulates the expression of pattern recognition receptors and stimulates interferon production. Here, we investigated the role of RA in DCs in mounting immunity to respiratory syncytial virus (RSV). To abolish RA signaling in DCs, we used mice expressing a dominant negative form of retinoic acid receptor-α (RARα) under the CD11c promoter (CD11c-dnRARα). Paradoxically, upon RSV challenge, these animals had lower viral burden, reduced pathology, and greater Th1 polarized immunity than wild-type (WT) mice. Moreover, CD11c-dnRARα DCs infected with RSV showed enhancement in innate and adaptive immunity genes, while genes associated with viral replication were downregulated. These findings suggest that the absence of RA signaling in DCs enhances innate immunity against RSV infection leading to decreased viral load and reduced pathogenicity.

3.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586014

RESUMO

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA