Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 23(7): 817-831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36380402

RESUMO

AIMS: The aim of this study was to sensitize the resistant breast adenocarcinoma cells towards Tumour Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced apoptosis. BACKGROUND: Breast cancer is a heterogeneous disease involving complex mechanisms. TRAIL is a potential anticancer candidate for targeted treatment due to its selective killing effects on neoplastic cells. Nonetheless, resistance occurs in many cancers either intrinsically or after multiple treatments. OBJECTIVE: Therefore, this research investigated whether the combination of Trichostatin A (TSA) and Zebularine (Zeb) (TZ) followed by TRAIL (TZT) could sensitize the human breast adenocarcinoma cells towards apoptosis. METHODS: The breast adenocarcinoma cells, MDA-MB-231, MCF-7 and E-MDA-MB-231 (E-cadherin re-expressed MDA-MB-231) were treated with TSA, Zeb, TZ, TRAIL and TZT. The cells were subjected to hematoxylin and eosin (H & E) staining and FITC-Annexin V/Propidium Iodide apoptosis detection prior to proteome profiling. RESULTS: Based on morphological observation, apoptosis was induced in all cells treated with all treatment regimens though it was more evident for the TZT-treated cells. In the apoptosis detection analysis, TZ increased early apoptosis significantly in MDA-MB-231 and MCF-7 while TRAIL induced late apoptosis significantly in E-MDA-MB-231. Based on the proteome profiling on MDA-MB-231, TRAIL R2 and Fas expression was increased. For E-MDA-MB- 231, down-regulation of catalase, paraoxonase-2 (PON2), clusterin, an inhibitor of apoptosis proteins (IAPs) and cell stress proteins validated the notion that E-cadherin re-expression enhances TZT anti-cancer efficacy. Similar trend was observed in MCF-7 whereby TZT treatment down-regulated the anti-apoptotic catalase and PON2, increased the proapoptotic, B cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad) and Bcl-2-associated X (Bax), second mitochondria-derived activator of caspase (SMAC) and HtrA serine peptidase 2 (HTRA2) as well as TRAIL receptors (TRAIL R1 and TRAIL R2). CONCLUSION: TZ treatment serves as an efficient treatment regimen for MDA-MB-231 and MCF-7, while TRAIL serves as a better treatment option for E-MDA-MB-231. Therefore, future studies on E-cadherin's positive regulatory role in TRAIL-induced apoptosis are warranted.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Humanos , Feminino , Catalase , Ligantes , Proteoma/farmacologia , Linhagem Celular Tumoral , Apoptose , Neoplasias da Mama/patologia , Fator de Necrose Tumoral alfa , Proteínas Inibidoras de Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Caderinas , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
2.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708043

RESUMO

An ideal scaffold should be biocompatible, having appropriate microstructure, excellent mechanical strength yet degrades. Chitosan exhibits most of these exceptional properties, but it is always associated with sub-optimal cytocompatibility. This study aimed to incorporate graphene oxide at wt % of 0, 2, 4, and 6 into chitosan matrix via direct blending of chitosan solution and graphene oxide, freezing, and freeze drying. Cell fixation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, alkaline phosphatase colorimetric assays were conducted to assess cell adhesion, proliferation, and early differentiation of MG63 on chitosan-graphene oxide scaffolds respectively. The presence of alkaline phosphatase, an early osteoblast differentiation marker, was further detected in chitosan-graphene oxide scaffolds using western blot. These results strongly supported that chitosan scaffolds loaded with graphene oxide at 2 wt % mediated cell adhesion, proliferation, and early differentiation due to the presence of oxygen-containing functional groups of graphene oxide. Therefore, chitosan scaffolds loaded with graphene oxide at 2 wt % showed the potential to be developed into functional bone scaffolds.


Assuntos
Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Grafite/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Adesão Celular/efeitos dos fármacos , Glutaral/química , Humanos , Microscopia Eletrônica de Varredura , Osteoblastos/metabolismo
3.
Crit Rev Oncol Hematol ; 143: 81-94, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31561055

RESUMO

Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.


Assuntos
Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Receptores Chamariz do Fator de Necrose Tumoral/agonistas
4.
Crit Rev Oncol Hematol ; 121: 11-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29279096

RESUMO

E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering ß-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.


Assuntos
Caderinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Antígenos CD , Caderinas/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/genética , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA