Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JASA Express Lett ; 4(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662119

RESUMO

This study presents a dataset of audio-visual soundscape recordings at 62 different locations in Singapore, initially made as full-length recordings over spans of 9-38 min. For consistency and reduction in listener fatigue in future subjective studies, one-minute excerpts were cropped from the full-length recordings. An automated method using pre-trained models for Pleasantness and Eventfulness (according to ISO 12913) in a modified partitioning around medoids algorithm was employed to generate the set of excerpts by balancing the need to encompass the perceptual space with uniformity in distribution. A validation study on the method confirmed its adherence to the intended design.


Assuntos
Percepção Auditiva , Singapura , Humanos , Percepção Auditiva/fisiologia , Algoritmos , Som
2.
J Am Heart Assoc ; 11(23): e027958, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416172

RESUMO

Background Lipoprotein lipase (LPL)-derived fatty acid is a major source of energy for cardiac contraction. Synthesized in cardiomyocytes, LPL requires translocation to the vascular lumen for hydrolysis of lipoprotein triglyceride, an action mediated by endothelial cell (EC) release of heparanase. We determined whether flow-mediated biophysical forces can cause ECs to secrete heparanase and thus regulate cardiac metabolism. Methods and Results Isolated hearts were retrogradely perfused. Confluent rat aortic ECs were exposed to laminar flow using an orbital shaker. Cathepsin L activity was determined using gelatin-zymography. Diabetes was induced in rats with streptozotocin. Despite the abundance of enzymatically active heparanase in the heart, it was the enzymatically inactive, latent heparanase that was exceptionally responsive to flow-induced release. EC exposed to orbital rotation exhibited a similar pattern of heparanase secretion, an effect that was reproduced by activation of the mechanosensor, Piezo1. The laminar flow-mediated release of heparanase from EC required activation of both the purinergic receptor and protein kinase D, a kinase that assists in vesicular transport of proteins. Heparanase influenced cardiac metabolism by increasing cardiomyocyte LPL displacement along with subsequent replenishment. The flow-induced heparanase secretion was augmented following diabetes and could explain the increased heparin-releasable pool of LPL at the coronary lumen in these diabetic hearts. Conclusions ECs sense fluid shear-stress and communicate this information to subjacent cardiomyocytes with the help of heparanase. This flow-induced mechanosensing and its dynamic control of cardiac metabolism to generate ATP, using LPL-derived fatty acid, is exquisitely adapted to respond to disease conditions, like diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus , Lipase Lipoproteica , Animais , Ratos , Diabetes Mellitus/enzimologia , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Diabetes Mellitus Experimental/enzimologia , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA