Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
2.
Hong Kong Med J ; 30(2): 94-101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577838

RESUMO

INTRODUCTION: Early identification and initiation of reperfusion therapy is essential for suspected acute ischaemic stroke. A pre-hospital stroke notification (PSN) protocol using FASE (facial drooping, arm weakness, speech difficulties, and eye palsy) was implemented to improve key performance indicators (KPIs) in acute stroke care delivery. We assessed KPIs and clinical outcomes before and after PSN implementation in Hong Kong. METHODS: This prospective cohort study with historical controls was conducted in the Accident and Emergency Departments of four public hospitals in Hong Kong. Patients were screened using the PSN protocol between August 2021 and February 2022. Suspected stroke patients between August 2020 and February 2021 were included as historical controls. Door-to-needle (DTN) and door-to-computed tomography (DTC) times before and after PSN implementation were compared. Clinical outcomes including National Institutes of Health Stroke Scale score at 24 hours and modified Rankin Scale score at 3 months after intravenous recombinant tissue-type plasminogen activator (IV-rtPA) were also assessed. RESULTS: Among the 715 patients (266 PSN and 449 non-PSN) included, 50.8% of PSN patients and 37.7% of non-PSN patients had a DTC time within 25 minutes (P<0.001). For the 58 PSN and 134 non-PSN patients given IV-rtPA, median DTN times were 67 and 75.5 minutes, respectively (P=0.007). The percentage of patients with a DTN time within 60 minutes was higher in the PSN group than in the non-PSN group (37.9% vs 21.6%; P=0.019). No statistically significant differences in clinical outcomes were observed. CONCLUSION: Although the PSN protocol shortened DTC and DTN times, clinical outcomes did not significantly differ.

3.
Biochem Pharmacol ; : 116187, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561090

RESUMO

Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid ß-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.

4.
Br J Pharmacol ; 181(13): 1916-1934, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430056

RESUMO

BACKGROUND AND PURPOSE: Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH: BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS: In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of ß2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS: Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.


Assuntos
Asma , Camundongos Endogâmicos BALB C , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Asma/imunologia , Asma/metabolismo , Asma/terapia , Camundongos , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pyroglyphidae/imunologia , Inflamação/metabolismo , Inflamação/imunologia , Citocinas/metabolismo , Feminino , Modelos Animais de Doenças
5.
Vaccine ; 42(9): 2135-2137, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38453618

RESUMO

The COVID-19 pandemic has affected people of all ages worldwide. However, there is still no information on the vaccine effectiveness (VE) of inactivated COVID-19 vaccines in children aged less than 3 years old. This study highlighted that 2 doses of CoronaVac were effective in preventing COVID-19, with a VE of 83.1 %.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de Produtos Inativados , Criança , Humanos , Pré-Escolar , COVID-19/prevenção & controle , Hong Kong/epidemiologia , Pandemias
8.
Handb Exp Pharmacol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418669

RESUMO

Chronic airway inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and their associated exacerbations cause significant socioeconomic burden. There are still major obstacles to effective therapy for controlling severe asthma and COPD progression. Advances in understanding the pathogenesis of the two diseases at the cellular and molecular levels are essential for the development of novel therapies. In recent years, significant efforts have been made to identify natural products as potential drug leads for treatment of human diseases and to investigate their efficacy, safety, and underlying mechanisms of action. Many major active components from various natural products have been extracted, isolated, and evaluated for their pharmacological efficacy and safety. For the treatment of asthma and COPD, many promising natural products have been discovered and extensively investigated. In this chapter, we will review a range of natural compounds from different chemical classes, including terpenes, polyphenols, alkaloids, fatty acids, polyketides, and vitamin E, that have been demonstrated effective against asthma and/or COPD and their exacerbations in preclinical models and clinical trials. We will also elaborate in detail their underlying mechanisms of action unraveled by these studies and discuss new opportunities and potential challenges for these natural products in managing asthma and COPD.

9.
Br J Haematol ; 204(1): 74-85, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964471

RESUMO

No one doubts the significant variation in the practice of transfusion medicine. Common examples are the variability in transfusion thresholds and the use of tranexamic acid for surgery with likely high blood loss despite evidence-based standards. There is a long history of applying different strategies to address this variation, including education, clinical guidelines, audit and feedback, but the effectiveness and cost-effectiveness of these initiatives remains unclear. Advances in computerised decision support systems and the application of novel electronic capabilities offer alternative approaches to improving transfusion practice. In England, the National Institute for Health and Care Research funded a Blood and Transplant Research Unit (BTRU) programme focussing on 'A data-enabled programme of research to improve transfusion practices'. The overarching aim of the BTRU is to accelerate the development of data-driven methods to optimise the use of blood and transfusion alternatives, and to integrate them within routine practice to improve patient outcomes. One particular area of focus is implementation science to address variation in practice.


Assuntos
Transfusão de Sangue , Humanos , Inglaterra
10.
Public Health ; 226: 80-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016199

RESUMO

OBJECTIVE: This study is to evaluate if there is any difference in the balance between incidence of and remission from overweight/obesity in Hong Kong school-age children before and during the COVID-19 pandemic over three years. METHODS: This is a retrospective longitudinal study that involved children aged 6-16 years from a database of the School Physical Fitness Award Scheme. RESULTS: 2765 students were longitudinally followed up for two years. The prevalence of childhood overweight/obesity was increased between the 2019 and 2021 academic years (P < 0.001). During the COVID-19 pandemic, the rate of obesity remission significantly reduced by 7.9 % (P = 0.003), at a background of a plateau of obesity among children and adolescents. CONCLUSIONS: Our study provides evidence on the impact of school closure and home confinement as a standard infection control measure for the prevention of COVID-19, which are likely to break the balance between incidence of and remission from childhood obesity.


Assuntos
COVID-19 , Obesidade Infantil , Adolescente , Humanos , Criança , Obesidade Infantil/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Longitudinais , Estudos Retrospectivos , Hong Kong/epidemiologia , Pandemias , Sobrepeso/epidemiologia
13.
Respir Res ; 24(1): 269, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932719

RESUMO

BACKGROUND: Allergic asthma is a common respiratory disease that significantly impacts human health. Through in silico analysis of human lung RNASeq, we found that asthmatic lungs display lower levels of Isthmin-1 (ISM1) expression than healthy lungs. ISM1 is an endogenous anti-inflammatory protein that is highly expressed in mouse lungs and bronchial epithelial cells, playing a crucial role in maintaining lung homeostasis. However, how ISM1 influences asthma remains unclear. This study aims to investigate the potential involvement of ISM1 in allergic airway inflammation and uncover the underlying mechanisms. METHODS: We investigated the pivotal role of ISM1 in airway inflammation using an ISM1 knockout mouse line (ISM1-/-) and challenged them with house dust mite (HDM) extract to induce allergic-like airway/lung inflammation. To examine the impact of ISM1 deficiency, we analyzed the infiltration of immune cells into the lungs and cytokine levels in bronchoalveolar lavage fluid (BALF) using flow cytometry and multiplex ELISA, respectively. Furthermore, we examined the therapeutic potential of ISM1 by administering recombinant ISM1 (rISM1) via the intratracheal route to rescue the effects of ISM1 reduction in HDM-challenged mice. RNA-Seq, western blot, and fluorescence microscopy techniques were subsequently used to elucidate the underlying mechanisms. RESULTS: ISM1-/- mice showed a pronounced worsening of allergic airway inflammation and hyperresponsiveness upon HDM challenge. The heightened inflammation in ISM1-/- mice correlated with enhanced lung cell necroptosis, as indicated by higher pMLKL expression. Intratracheal delivery of rISM1 significantly reduced the number of eosinophils in BALF and goblet cell hyperplasia. Mechanistically, ISM1 stimulates adiponectin secretion by type 2 alveolar epithelial cells partially through the GRP78 receptor and enhances adiponectin-facilitated apoptotic cell clearance via alveolar macrophage efferocytosis. Reduced adiponectin expression under ISM1 deficiency also contributed to intensified necroptosis, prolonged inflammation, and heightened severity of airway hyperresponsiveness. CONCLUSIONS: This study revealed for the first time that ISM1 functions to restrain airway hyperresponsiveness to HDM-triggered allergic-like airway/lung inflammation in mice, consistent with its persistent downregulation in human asthma. Direct administration of rISM1 into the airway alleviates airway inflammation and promotes immune cell clearance, likely by stimulating airway adiponectin production. These findings suggest that ISM1 has therapeutic potential for allergic asthma.


Assuntos
Asma , Hipersensibilidade , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos Alveolares , Animais , Humanos , Camundongos , Adiponectina , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Pyroglyphidae , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
14.
Pharmacol Res ; 196: 106929, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717682

RESUMO

Severe asthma is a difficult-to-treat chronic airway inflammatory disease requiring systemic corticosteroids to achieve asthma control. It has recently been shown that drugs targeting immunometabolism have elicited anti-inflammatory effects. The purpose of this study was to investigate potential immunometabolic modulatory actions of systemic dexamethasone (Dex) in an Aspergillus fumigatus (Af)-induced severe asthma model. Mice were repeatedly exposed to the Af aeroallergen before systemic treatment with Dex. Simultaneous measurements of airway inflammation, real-time glycolytic and oxidative phosphorylation (OXPHOS) activities, expression levels of key metabolic enzymes, and amounts of metabolites were studied in lung tissues, and in primary alveolar macrophages (AMs) and eosinophils. Dex markedly reduced Af-induced eosinophilic airway inflammation, which was coupled with an overall reduction in lung glycolysis, glutaminolysis, and fatty acid synthesis. The anti-inflammatory effects of Dex may stem from its immunometabolic actions by downregulating key metabolic enzymes including pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase. Substantial suppression of eosinophilic airway inflammation by Dex coincided with a specific escalation of mitochondrial proton leak in primary lung eosinophils. Besides, while our findings confirmed that inflammation corresponds with an upregulation of glycolysis, it was accompanied with an unexpectedly stable or elevated OXPHOS in the lungs and activated immune cells, respectively. Our findings reveal that the anti-inflammatory effects of Dex in severe asthma are associated with downregulation of pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase, and the augmentation of mitochondrial proton leak in lung eosinophils. These enzymes and biological processes may be valuable targets for therapeutic interventions against severe asthma.

15.
Mol Cell Endocrinol ; 578: 112049, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666445

RESUMO

Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific paracrine factors which regulate ovarian cumulus cell (CC) functions. This study aimed to investigate if BMP15 and GDF9 bound to CCs can be characterized, quantified, and show an association with IVF outcomes in infertile women. BMP15 and GDF9 ELISAs were validated and applied to discarded CC extracts. Pooled CCs from individual patients were collected from 120 (cohort 1; BMP15 only) and 81 infertility patients (cohort 2; BMP15 and GDF9) undergoing superovulation. BMP15 and GDF9 levels expressed per CC DNA were correlated with maternal age, clinical and embryology data. Total BMP15 and GDF9 were highly correlated with each other (r = 0.9, p < 0.001). The GDF9:BMP15 ratio was unrelated to oocyte number or age. BMP15/CC DNA and GDF9/CC DNA were unaffected by the type of superovulation and were not related to oocyte/embryo outcomes.

16.
Adv Pharmacol ; 98: 111-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524485

RESUMO

Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.


Assuntos
Sistema Renina-Angiotensina , Doenças Respiratórias , Humanos , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais , Fibrose , Angiotensinas/metabolismo , Angiotensinas/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo
17.
Pharmacol Res ; 194: 106861, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480973

RESUMO

The p38MAPK-MK2 signaling axis functions as an initiator of inflammation. Targeting the p38MAPK-MK2 signaling axis represents a direct therapeutic intervention of inflammatory diseases. We described here a novel role of andrographolide (AG), a small-molecule ent-labdane natural compound, as an inhibitor of p38MAPK-MK2 axis via MK2 degradation. AG was found to bind to the activation loop of MK2, located at the interface of the p38MAPK-MK2 biomolecular complex. This interaction disrupted the complex formation and predisposed MK2 to proteasome-mediated degradation. We showed that AG induced MK2 degradation in a concentration- and time-dependent manner and exerted its anti-inflammatory effects by enhancing the mRNA-destabilizing activity of tristetraprolin, thereby inhibiting pro-inflammatory mediator production (e.g., TNF-α, MCP-1). Administration of AG via intratracheal (i.t.) route to mice induced MK2 downregulation in lung alveolar macrophages, but not lung tissues, and prevented macrophage activation. Our study also demonstrated that the anti-inflammatory effects achieved by AG via MK2 degradation were more durable and sustained than that achieved by the conventional MK2 kinase inhibitors (e.g., PF-3644022). Taken together, our findings illustrated a novel mode of action of AG by modulating the p38MAPK-MK2 signaling axis and would pave the way for the development of a novel class of anti-inflammatory agents targeting MK2 for degradation by harnessing the privileged scaffold of AG.


Assuntos
Diterpenos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Carbohydr Res ; 532: 108899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478689

RESUMO

Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.


Assuntos
Materiais Biocompatíveis , Nanopartículas , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Nanopartículas/química , Celulose/química , Antibacterianos/farmacologia , Bactérias/química
20.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993629

RESUMO

Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between those cell types 1 . Neural cell types have previously been defined by morphology 2, 3 , electrophysiology 4, 5 , transcriptomic expression 6-8 , connectivity 9-13 , or even a combination of such modalities 14-16 . More recently, the Patch-seq technique has enabled the characterization of morphology (M), electrophysiology (E), and transcriptomic (T) properties from individual cells 17-20 . Using this technique, these properties were integrated to define 28, inhibitory multimodal, MET-types in mouse primary visual cortex 21 . It is unknown how these MET-types connect within the broader cortical circuitry however. Here we show that we can predict the MET-type identity of inhibitory cells within a large-scale electron microscopy (EM) dataset and these MET-types have distinct ultrastructural features and synapse connectivity patterns. We found that EM Martinotti cells, a well defined morphological cell type 22, 23 known to be Somatostatin positive (Sst+) 24, 25 , were successfully predicted to belong to Sst+ MET-types. Each identified MET-type had distinct axon myelination patterns and synapsed onto specific excitatory targets. Our results demonstrate that morphological features can be used to link cell type identities across imaging modalities, which enables further comparison of connectivity in relation to transcriptomic or electrophysiological properties. Furthermore, our results show that MET-types have distinct connectivity patterns, supporting the use of MET-types and connectivity to meaningfully define cell types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA