Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(10): e2113233119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235448

RESUMO

SignificanceOur work focuses on the critical longstanding question of the nontranscriptional role of p53 in tumor suppression. We demonstrate here that poly(ADP-ribose) polymerase (PARP)-dependent modification of p53 enables rapid recruitment of p53 to damage sites, where it in turn directs early repair pathway selection. Specifically, p53-mediated recruitment of 53BP1 at early time points promotes nonhomologous end joining over the more error-prone microhomology end-joining. Similarly, p53 directs nucleotide excision repair by mediating DDB1 recruitment. This property of p53 also correlates with tumor suppression in vivo. Our study provides mechanistic insight into how certain transcriptionally deficient p53 mutants may retain tumor-suppressive functions through regulating the DNA damage response.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
2.
Nat Commun ; 12(1): 3440, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103529

RESUMO

The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Estresse Fisiológico , Fosfatos Açúcares/metabolismo , Regulação Alostérica , Sítios de Ligação , Sequência Conservada , Microscopia Crioeletrônica , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/ultraestrutura , Evolução Molecular , Guanosina Difosfato/metabolismo , Células HEK293 , Humanos , Leucoencefalopatias/patologia , Ligantes , Metaboloma , Modelos Moleculares , Mutação/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Fosfatos Açúcares/química
3.
Elife ; 82019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30624206

RESUMO

The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity. We show that introduction of a human VWM mutation into mice leads to persistent ISR induction in the central nervous system. ISR activation precedes myelin loss and development of motor deficits. Remarkably, long-term treatment with a small molecule eIF2B activator, 2BAct, prevents all measures of pathology and normalizes the transcriptome and proteome of VWM mice. 2BAct stimulates the remaining activity of mutant eIF2B complex in vivo, abrogating the maladaptive stress response. Thus, 2BAct-like molecules may provide a promising therapeutic approach for VWM and provide relief from chronic ISR induction in a variety of disease contexts.


Assuntos
Encefalopatias/etiologia , Fator de Iniciação 2B em Eucariotos/metabolismo , Estresse Psicológico/complicações , Substância Branca/patologia , Animais , Astrócitos/patologia , Encefalopatias/patologia , Encefalopatias/prevenção & controle , Doença Crônica , Fator de Iniciação 2B em Eucariotos/genética , Humanos , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/patologia , Fosforilação , Biossíntese de Proteínas , Proteoma , Aumento de Peso
4.
Elife ; 72018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29489452

RESUMO

eIF2B is a dedicated guanine nucleotide exchange factor for eIF2, the GTPase that is essential to initiate mRNA translation. The integrated stress response (ISR) signaling pathway inhibits eIF2B activity, attenuates global protein synthesis and upregulates a set of stress-response proteins. Partial loss-of-function mutations in eIF2B cause a neurodegenerative disorder called Vanishing White Matter Disease (VWMD). Previously, we showed that the small molecule ISRIB is a specific activator of eIF2B (Sidrauski et al., 2015). Here, we report that various VWMD mutations destabilize the decameric eIF2B holoenzyme and impair its enzymatic activity. ISRIB stabilizes VWMD mutant eIF2B in the decameric form and restores the residual catalytic activity to wild-type levels. Moreover, ISRIB blocks activation of the ISR in cells carrying these mutations. As such, ISRIB promises to be an invaluable tool in proof-of-concept studies aiming to ameliorate defects resulting from inappropriate or pathological activation of the ISR.


Assuntos
Acetamidas/metabolismo , Cicloexilaminas/metabolismo , Ativadores de Enzimas/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/fisiopatologia , Proteínas Mutantes/metabolismo , Fármacos Neuroprotetores/metabolismo , Linhagem Celular , Fator de Iniciação 2B em Eucariotos/genética , Humanos , Leucoencefalopatias/genética , Proteínas Mutantes/genética
5.
Dev Cell ; 41(6): 638-651.e5, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28633018

RESUMO

Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance.


Assuntos
Aneuploidia , Instabilidade Cromossômica/genética , Aberrações Cromossômicas , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica/imunologia , Segregação de Cromossomos/genética , Segregação de Cromossomos/imunologia , Dosagem de Genes/genética , Instabilidade Genômica/genética , Humanos , Cariótipo , Neoplasias/genética , Neoplasias/imunologia
6.
Biol Open ; 5(10): 1431-1440, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591191

RESUMO

Centrosomes are major microtubule-organizing centers composed of centrioles surrounded by an extensive proteinacious layer called the pericentriolar material (PCM). In Caenorhabditis elegans embryos, the mitotic PCM expands by Polo-like kinase 1 (PLK-1) phosphorylation-accelerated assembly of SPD-5 molecules into supramolecular scaffolds. However, how PLK-1 phosphorylation regulates SPD-5 assembly is not known. We found that a mutant version of SPD-5 that is insensitive to PLK-1 phosphorylation (SPD-54A) could localize to PCM but was unable to rescue the reduction in PCM size and density when wild-type SPD-5 levels were decreased. In vitro, purified SPD-54A self-assembled into functional supramolecular scaffolds over long time scales, suggesting that phosphorylation only controls the rate of SPD-5 scaffold assembly. Furthermore, the SPD-5 scaffold, once assembled, remained intact and supported microtubule nucleation in the absence of PLK-1 activity in vivo We conclude that PLK-1 is required for rapid assembly of the PCM scaffold but not for scaffold maintenance or function. Based on this idea, we developed a theoretical model that adequately predicted PCM growth rates in different mutant conditions in vivo We propose that PLK-1 phosphorylation-dependent conversion of SPD-5 into an assembly-competent form underlies PCM formation in vivo and that the rate of this conversion determines final PCM size and density.

7.
Science ; 348(6239): 1155-60, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25931445

RESUMO

Centrioles are ancient organelles that build centrosomes, the major microtubule-organizing centers of animal cells. Extra centrosomes are a common feature of cancer cells. To investigate the importance of centrosomes in the proliferation of normal and cancer cells, we developed centrinone, a reversible inhibitor of Polo-like kinase 4 (Plk4), a serine-threonine protein kinase that initiates centriole assembly. Centrinone treatment caused centrosome depletion in human and other vertebrate cells. Centrosome loss irreversibly arrested normal cells in a senescence-like G1 state by a p53-dependent mechanism that was independent of DNA damage, stress, Hippo signaling, extended mitotic duration, or segregation errors. In contrast, cancer cell lines with normal or amplified centrosome numbers could proliferate indefinitely after centrosome loss. Upon centrinone washout, each cancer cell line returned to an intrinsic centrosome number "set point." Thus, cells with cancer-associated mutations fundamentally differ from normal cells in their response to centrosome loss.


Assuntos
Centríolos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Sulfonas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Sulfonas/química
8.
Front Oncol ; 5: 285, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26732741

RESUMO

Aurora kinases are essential for cell division and are frequently misregulated in human cancers. Based on their potential as cancer therapeutics, a plethora of small molecule Aurora kinase inhibitors have been developed, with a subset having been adopted as tools in cell biology. Here, we fill a gap in the characterization of Aurora kinase inhibitors by using biochemical and cell-based assays to systematically profile a panel of 10 commercially available compounds with reported selectivity for Aurora A (MLN8054, MLN8237, MK-5108, MK-8745, Genentech Aurora Inhibitor 1), Aurora B (Hesperadin, ZM447439, AZD1152-HQPA, GSK1070916), or Aurora A/B (VX-680). We quantify the in vitro effect of each inhibitor on the activity of Aurora A alone, as well as Aurora A and Aurora B bound to fragments of their activators, TPX2 and INCENP, respectively. We also report kinome profiling results for a subset of these compounds to highlight potential off-target effects. In a cellular context, we demonstrate that immunofluorescence-based detection of LATS2 and histone H3 phospho-epitopes provides a facile and reliable means to assess potency and specificity of Aurora A versus Aurora B inhibition, and that G2 duration measured in a live imaging assay is a specific readout of Aurora A activity. Our analysis also highlights variation between HeLa, U2OS, and hTERT-RPE1 cells that impacts selective Aurora A inhibition. For Aurora B, all four tested compounds exhibit excellent selectivity and do not significantly inhibit Aurora A at effective doses. For Aurora A, MK-5108 and MK-8745 are significantly more selective than the commonly used inhibitors MLN8054 and MLN8237. A crystal structure of an Aurora A/MK-5108 complex that we determined suggests the chemical basis for this higher specificity. Taken together, our quantitative biochemical and cell-based analyses indicate that AZD1152-HQPA and MK-8745 are the best current tools for selectively inhibiting Aurora B and Aurora A, respectively. However, MK-8745 is not nearly as ideal as AZD1152-HQPA in that it requires high concentrations to achieve full inhibition in a cellular context, indicating a need for more potent Aurora A-selective inhibitors. We conclude with a set of "good practice" guidelines for the use of Aurora inhibitors in cell biology experiments.

9.
Elife ; 2: e01071, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24052813

RESUMO

Centrioles organise centrosomes and template cilia and flagella. Several centriole and centrosome proteins have been linked to microcephaly (MCPH), a neuro-developmental disease associated with small brain size. CPAP (MCPH6) and STIL (MCPH7) are required for centriole assembly, but it is unclear how mutations in them lead to microcephaly. We show that the TCP domain of CPAP constitutes a novel proline recognition domain that forms a 1:1 complex with a short, highly conserved target motif in STIL. Crystal structures of this complex reveal an unusual, all-ß structure adopted by the TCP domain and explain how a microcephaly mutation in CPAP compromises complex formation. Through point mutations, we demonstrate that complex formation is essential for centriole duplication in vivo. Our studies provide the first structural insight into how the malfunction of centriole proteins results in human disease and also reveal that the CPAP-STIL interaction constitutes a conserved key step in centriole biogenesis. DOI:http://dx.doi.org/10.7554/eLife.01071.001.


Assuntos
Centríolos , Peptídeos e Proteínas de Sinalização Intracelular/química , Microcefalia/fisiopatologia , Proteínas Associadas aos Microtúbulos/química , Sítios de Ligação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mutação Puntual , Prolina/química , Conformação Proteica
10.
Dev Cell ; 25(3): 284-98, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23673331

RESUMO

Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase activity-independent function in SAS-6 recruitment. Perturbing this interaction, or the interaction between an adjacent segment of the SAS-6 coiled coil and SAS-5, prevented SAS-6 recruitment and cartwheel assembly. SAS-6 mutants with alanine substitutions in a previously described ZYG-1 target site or in 37 other residues, either phosphorylated by ZYG-1 in vitro or conserved in closely related nematodes, all supported cartwheel assembly. We propose that ZYG-1 binding to the SAS-6 coiled coil recruits the SAS-6-SAS-5 complex to the mother centriole, where a ZYG-1 kinase activity-dependent step, whose target is unlikely to be SAS-6, triggers cartwheel assembly.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Centríolos/genética , Sequência Conservada , Embrião não Mamífero/metabolismo , Ativação Enzimática , Masculino , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Multimerização Proteica , Interferência de RNA , Transgenes
11.
Cell ; 147(4): 893-906, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22078885

RESUMO

Cells keep their energy balance and avoid oxidative stress by regulating mitochondrial movement, distribution, and clearance. We report here that two Parkinson's disease proteins, the Ser/Thr kinase PINK1 and ubiquitin ligase Parkin, participate in this regulation by arresting mitochondrial movement. PINK1 phosphorylates Miro, a component of the primary motor/adaptor complex that anchors kinesin to the mitochondrial surface. The phosphorylation of Miro activates proteasomal degradation of Miro in a Parkin-dependent manner. Removal of Miro from the mitochondrion also detaches kinesin from its surface. By preventing mitochondrial movement, the PINK1/Parkin pathway may quarantine damaged mitochondria prior to their clearance. PINK1 has been shown to act upstream of Parkin, but the mechanism corresponding to this relationship has not been known. We propose that PINK1 phosphorylation of substrates triggers the subsequent action of Parkin and the proteasome.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Dados de Sequência Molecular , Doença de Parkinson/metabolismo , Fosforilação , Ratos , Proteínas rho de Ligação ao GTP/química
12.
Proc Natl Acad Sci U S A ; 107(26): 11781-6, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20547877

RESUMO

Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Sequência Conservada , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinesinas/genética , Cinética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática
13.
Biophys J ; 96(7): 2799-807, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19348763

RESUMO

We have used electron paramagnetic resonance and fluorescence spectroscopy to study the interaction between the kinesin-1 head and its regulatory tail domain. The interaction between the tails and the enzymatically active heads has been shown to inhibit intrinsic and microtubule-stimulated ADP release. Here, we demonstrate that the probe mobility of two different spin-labeled nucleotide analogs in the kinesin-1 nucleotide pocket is restricted upon binding of the tail domain to kinesin-1 heads. This conformational restriction is distinct from the microtubule-induced changes in the nucleotide pocket. Unlike myosin V, this tail-induced restriction occurs independent of nucleotide state. We find that the head-tail interaction that causes the restriction only weakly stabilizes Mg(2+) in the nucleotide pocket. The conformational restriction also occurs when a tail construct containing a K922A point mutation is used. This mutation eliminates the tail's ability to inhibit ADP release, indicating that the tail does not inhibit nucleotide ejection from the pocket by simple steric hindrance. Together, our data suggest that the observed head-tail interaction serves as a scaffold to position K922 to exert its inhibitory effect, possibly by interacting with the nucleotide alpha/beta-phosphates in a manner analogous to the arginine finger regulators of some G proteins.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Nucleotídeos/metabolismo , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Magnésio/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Movimento (Física) , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA