RESUMO
Pediococcus pentosaceus, which often occurs in fermented foods, is characterized by numerous positive effects on the human health, such as the presence of possible probiotic abilities, the reduction of cholesterol levels, satisfactory antimicrobial activity, and certain therapeutic functions. This study was conducted with the goal of describing the genomic content of Pediococcus pentosaceus ENM104, a strain known for its inhibitory effects against pathogenic bacteria and its remarkable probiotic potential, including the induction of significant reductions in cholesterol levels and the production of γ-aminobutyric acid (GABA). The P. pentosaceus ENM104 chromosome is circular. The chromosome is 1,734,928 bp with a GC content of 37.2%. P. pentosaceus also harbors a circular plasmid, pENM104, that is 71,811 bp with a GC content of 38.1%. Functional annotations identified numerous genes associated with probiotic traits, including those involved in stress adaptation (e.g., heat stress: htpX, dnaK, and dnaJ), bile tolerance (e.g., ppaC), vitamin biosynthesis (e.g., ribU, ribZ, ribF, and btuD), immunomodulation (e.g., dltA, dltC, and dltD), and bacteriocin production (e.g., pedA). Notably, genes responsible for lowering cholesterol levels (bile salt hydrolase, bsh) and GABA synthesis (glutamate/GABA antiporter, gadC) were also identified. The in vitro assay results using cell-free supernatants of P. pentosaceus ENM104 revealed antibacterial activity against carbapenem-resistant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, and the inhibition zone diameter increased progressively over time. This comprehensive study provides valuable insights into the molecular characteristics of P. pentosaceus ENM104, emphasizing its potential as a probiotic. Its notable cholesterol-lowering, GABA-producing, and antimicrobial capabilities suggest promising applications in the pharmaceutical and food industries. Future research should focus on further exploring these functional properties and assessing the strain's efficacy in clinical settings.
RESUMO
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
RESUMO
Lactiplantibacillus plantarum SPS109, an isolated strain of lactic acid bacteria (LAB) from fermented foods, showed remarkable potential as a probiotic with dual capabilities in γ-aminobutyric acid (GABA) production and cholesterol reduction. This study employs genomic and comparative analyses to search into the strain's genetic profile, safety features, and probiotic attributes. The safety assessment reveals the absence of virulence factors and antimicrobial resistance genes, while the genome uncovers bacteriocin-related elements, including sactipeptides and a cluster for putative plantaricins, strengthening its ability to combat diverse pathogens. Pangenome analysis revealed unique bacteriocin-related genes, specifically lcnD and bcrA, distinguishing SPS109 from four other L. plantarum strains producing GABA. In addition, genomic study emphasizes SPS109 strain distinctive features, two GABA-related genes responsible for GABA production and a bile tolerance gene (cbh) crucial for cholesterol reduction. Additionally, the analysis highlights several genes of potential probiotic properties, including stress tolerance, vitamin production, and antioxidant activity. In summary, L. plantarum SPS109 emerges as a promising probiotic candidate with versatile applications in the food and beverage industries, supported by its unique genomic features and safety profile.
RESUMO
Cronobacter sakazakii is a pathogen that causes severe diseases such as meningitis and necrotizing enterocolitis in infants, associated with the consumption of rehydrated powder infant formula. We report a whole-genome sequence of carbapenem-non-susceptible C. sakazakii isolated from the nasopharynx of the patient admitted to the ICU ward, Songkhla Hospital, Thailand.
RESUMO
The emergence and spread of antimicrobial resistance (AMR) among Enterobacteriaceae pose significant threats to global public health. In this study, we conducted a short-term surveillance effort in Southern Thailand hospitals to characterize the genomic diversity, AMR profiles, and virulence factors of Enterobacteriaceae strains. We identified 241 carbapenem-resistant Enterobacteriaceae, of which 12 were selected for whole-genome sequencing (WGS) and genome analysis. The strains included Proteus mirabilis, Serratia nevei, Klebsiella variicola, Klebsiella aerogenes, Klebsiella indica, Klebsiella grimontii, Phytobacter ursingii, Phytobacter palmae, Kosakonia spp., and Citrobacter freundii. The strains exhibited high levels of multidrug resistance, including resistance to carbapenem antibiotics. Whole-genome sequencing revealed a diverse array of antimicrobial resistance genes (ARGs), with strains carrying genes for ß-lactamase, efflux pumps, and resistance to other antibiotic classes. Additionally, stress response, metal tolerance, and virulence-associated genes were identified, highlighting the adaptability and pathogenic potential of these strains. A plasmid analysis identified several plasmid replicons, including IncA/C2, IncFIB(K), and Col440I, as well as several plasmids identical to those found globally, indicating the potential for the horizontal gene transfer of ARGs. Importantly, this study also identified a novel species of Kosakonia spp. PSU27, adding to the understanding of the genetic diversity and resistance mechanisms of Enterobacteriaceae in Southern Thailand. The results reported in this study highlight the critical importance of implementing effective antimicrobial management programs and developing innovative treatment approaches to urgently tackle AMR.
RESUMO
Lacticaseibacillus rhamnosus is a group of probiotic strains that have gained popularity for their potential health benefits such as promoting digestive health, boosting the immune system, improving lactose digestion, preventing and treating antibiotic-associated diarrhea, reducing the severity and duration of certain infections, and preventing the formation of dental plaque. In particular, L. rhamnosus strains SD4 and SD11 have promising human and animal health applications due to their ability to inhibit the growth of harmful pathogens. This study presents an in silico genomic analysis of L. rhamnosus strains SD4 and SD11. We analyzed draft genomes and conducted comparative genome analyses against several other probiotic strains, aiming to gain insights into the genomes of the two strains and to compare them to related strains isolated from other sources. We also aimed to clarify the functional mechanisms and adaptation of these strains to specific environments. Comprehensive insights into the genomes of L. rhamnosus SD4 and SD11 could enhance our understanding of their capacity to colonize, adapt, and exhibit probiotic properties after administration. This study holds significance in advancing our understanding of the potential health benefits associated with these strains and in elucidating the underlying mechanisms responsible for their effectiveness in humans and animals.
RESUMO
This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts.
RESUMO
OBJECTIVES: The objective of the study was to investigate the effect of short-term lozenges containing Lacticaseibacillus rhamnosus SD11 on cariogenic pathogens and on oral microbiota. MATERIALS AND METHODS: This double-blind, randomized, controlled trial included 121 subjects and was randomly divided into the control and probiotic group. All subjects were blindly administered to receive the control- or probiotic L. rhamnosus SD11 lozenges every day for 4 weeks and then followed up for another 4 weeks. RESULTS: After probiotic consumption, the probiotic group had significantly lower levels of Streptococcus mutans and significantly higher levels of total lactobacilli at 4 and 8 weeks compared with the baseline. The 16S rRNA sequencing revealed an increase in bacterial diversity and beneficial bacteria in the Firmicutes phylum, Bacilli class, and a reduction in the mutans streptococci group in the probiotic group. The opposite results were found in the control group. This study did not find any caries increment, nor did the subjects have any side effects after product consumption. CONCLUSION: With the limitation of a short-time study in low caries children, it showed that L. rhamnosus SD11 could increase beneficial bacteria in the Firmicutes phylum and Bacilli class that might support good oral health in children.
RESUMO
The banana prawn (Fenneropenaeus merguiensis) is a valuable prawn in the worldwide market. However, cultivation of this species is limited owing to the difficulty in culture management and limited knowledge of reproduction. Therefore, we studied the gene expression and molecular mechanisms involved in oogenesis for elucidating ovarian germ cell development in banana prawns. The tissue-specific distribution of certain genes identified from previous transcriptome data showed that FmCyclinB, FmNanos, and nuclear autoantigenic sperm protein (FmNASP) were only expressed in gonads. The in situ hybridization (ISH) of these three genes showed different expression patterns throughout oogenesis. FmCyclinB was highly expressed in pre-vitellogenic oocytes. FmNanos was expressed at almost the same level during oogenesis but showed the most expression in late pre-vitellogenic stages. Based on the highest expression of FmCyclinB and FmNanos in mid pre-vitellogenic and late pre-vitellogenic oocytes, respectively, we suggested that FmNanos may suppress FmCyclinB expression before initiation of vitellogenesis. Meanwhile, FmNASP expression was detected only in pre-vitellogenesis. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analysis of FmNASP expression was supported by FmNASP ISH analysis based on high expression of FmNASP in sub-adult ovaries, which contain most of pre-vitellogenic oocytes. In this study, we found three reliable ovarian markers for banana prawns and also found a dynamic change of molecular mechanism during the sub-stage of pre-vitellogenesis. We determined the expression levels of these genes involved in oogenesis. Our findings provide information for further studies on banana prawn reproduction which may assist in their cultivation.
RESUMO
Clostridioides difficile is a Gram-positive, obligate anaerobic, toxin-producing bacillus that is linked to antibiotic-associated diarrhea. Here, we report the whole-genome sequence of a C. difficile strain isolated from stool from a patient, using next-generation sequencing (MGISEG-2000). De novo assembly revealed a genome length of 4,208,266 bp. Multilocus sequence typing (MLST) results showed that the isolate belonged to sequence type 23 (ST23).
RESUMO
Pseudomonas aeruginosa is an important pathogen as it can cause hospital-acquired infections. Additionally, it can also colonize in patients and in other various environments. Hence, this study aimed to investigate the antimicrobial susceptibility, and to study the molecular features, of colonizing isolates of P. aeruginosa from Songklanagarind Hospital, Thailand. Genomic DNA extraction, whole-genome sequencing (WGS), and bioinformatics analysis were performed in all studied isolates. The findings demonstrated that the majority of isolates were non-susceptible to colistin and carbapenem. For in silico study, multilocus sequence typing (MLST) revealed one novel sequence type (ST) 3910 and multiple defined STs. The isolates carried several antimicrobial resistance genes (blaOXA-50, aph(3')-IIb, etc.) and virulence-associated genes (fleN, waaA, etc.). CRISPR-Cas sequences with different spacers and integrated bacteriophage sequences were also identified in these isolates. Very high SNPs were found in the alignments of the novel ST-3910 isolate with other isolates. A comparative genomic analysis exhibited phylogenetic clustering of our colonizing isolates with clinical isolates from many countries. Interestingly, ST-3981, ST-3982, ST-3983, ST-3984, ST-3985, ST-3986, ST-3986, ST-3986, ST-3987, and ST-3988, the new STs from published genomes, were assigned in this study. In conclusion, this WGS data might be useful for tracking the spread of P. aeruginosa colonizing isolates.
RESUMO
Rastrelliger brachysoma (short mackerel) and Rastrelliger kanagurta (Indian mackerel) are commercially important marine species in Southeast Asia. In recent years, numbers of these two species have been decreasing in the wild, and genomic information about them is still limited. We conducted a genome survey of these two mackerel species to acquire essential genomic information using next-generation sequencing data. To obtain this genetic information, comprehensive bioinformatics analyses were performed, including de novo assembly, gene prediction, functional annotation, and phylogenetic analysis. The estimated genome sizes were around 680.14 Mbp (R. brachysoma) and 688.82 Mbp (R. kanagurta). The heterozygosity of these species was very similar (≈0.81), while the repeat content for R. kanagurta (9.30%) was slightly higher than for R. brachysoma (8.30%). Functional annotation indicated that most of the genes predicted in these two species shared very close average amino acid identities (94.06%). The phylogenetic analysis revealed close phylogenetic relationships between these two species and other scombrids. This is the first reported genome survey and assembly of species in the genus Rastrelliger and could be useful for future comparative genomic studies.
RESUMO
Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications.
RESUMO
The Tor genus belongs to the group of cyprinid fish commonly known as mahseer. Although Tor species are rapidly declining in the wild, and some face extinction, ambiguities in species identification hinder their collection and conservation. We conducted a genome survey of male and female Tor tambra collected in Thailand. The genome sizes of the male and female fish were approximately 1,671 and 1,645 Mb, respectively, with repeat contents of approximately 33%. The heterozygosity ratios of the male and female fish, which were 0.34% and 0.39%, respectively, suggested that the sex of T. tambra is determined by the ZW system. A sex marker was identified in silico and confirmed by PCR amplification. The result indicated that T. tambra has a ZZ/ZW sex determination system. Subsequently, comparative genomic and phylogenetic analyses of T. tambra and other fish in the Cyprinidae family were performed to explore the genetic diversity and evolution of the species. We also assembled the complete mitochondrial genome sequences of the T. tambra collected in Thailand. A phylogenetic tree of different Tor species, constructed based on mitochondrial genome sequences, indicated that T. tambra was closely related to T. tambroides. We believe this is the first genome survey of a species from the Tor genus or Mahseer group. Our results may help identify Tor species, providing a reference for genetic studies of the Tor genus and other mahseer fish.
RESUMO
Gamma-aminobutyric acid (GABA) is an amino that plays a major role as a neurotransmitter. It iscommonly produced by lactic acid bacteria (LAB) naturally found in fermented food and fruit. Lactiplantibacillus plantarum DW12 is a high potential GABA-producing strain isolated from a fermented beverage. In this study, to highlight its ability to produce GABA, we sequenced the genome of L. plantarum DW12 and then performed comprehensive bioinformatics and meta-analysis to compare the genomic data of previously published genomes. Also, the evolutionary analysis among L. plantarum species was demonstrated using pan-genome analysis against 576 genomes from the database. As a result, the DW12 genome comprises one circular chromosome of 3,217,574 bp. It contains several genes that encode for the production of antimicrobial compounds including plantaricin A, E, F, J, K, and N. The glutamic acid decarboxylase (GAD) operon was found in the DW12 genome, suggests a high potential of producing GABA in this strain. Therefore, L. plantarum DW12 could be a good candidate as a starter culture in the beverage and food industries due to its safety aspects and ability to produce GABA.
Assuntos
Genoma Bacteriano , Lactobacillaceae , Ácido gama-Aminobutírico , Simulação por Computador , Genoma Bacteriano/genética , Genômica , Lactobacillaceae/genética , Ácido gama-Aminobutírico/metabolismoRESUMO
Germ cell cryopreservation has been used to preserve many fish species. However, this method has not been established for crustaceans; thus, we attempted to do this herein. The efficiency of slow freezing was compared to vitrification methods for germ cell cryopreservation in two types of marine shrimp, Fenneropenaeus merguiensis and Penaeus monodon. In situ hybridization with a vasa probe was used to identify germ cells. The effects of three cryoprotectants, dimethyl sulfoxide (DMSO), glycerol (GLY), and magnesium chloride (MgCl2), on germ cell viability and recovery rate were compared at three concentrations (5%, 10%, and 15%). The effects of thawing temperature, including 10 and 27 °C, were also investigated. We discovered that 10% DMSO with the vitrification is suitable for preserving the germ cells of F. merguiensis for a long time, whereas 10% GLY with vitrification is suitable for P. monodon. Moreover, the most suitable thawing temperature was 10 °C for both species. This is the first report of germ cell cryopreservation in crustaceans. Thus, we provide evidence that crustacean germ cells can be preserved long-term in liquid nitrogen; this is the first step in the sustainable preservation of crustaceans, especially shrimp.
Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Penaeidae , Testículo , Animais , Dimetil Sulfóxido/farmacologia , Congelamento , Glicerol/farmacologia , Cloreto de Magnésio/farmacologia , Masculino , Espermatogônias/citologia , VitrificaçãoRESUMO
Lactobacillus paracasei SD1, Lactobacillus rhamnosus SD11, and Lactobacillus gasseri SD12 were proposed as potential probiotics for oral health. However, the effects of them on host physiology are still unknown. This study aimed to select strains that can promote host growth and development in monocolonized Drosophila model compared with axenic and the commercial Lactobacillus rhamnosus GG-treated flies. The morphogenesis and growth of axenic Drosophila melanogaster were assessed from embryo to adult stage when provided with each probiotic strain-supplemented food. The colonization and persistence of probiotic in fly gut were also evaluated. The results indicated that axenic condition caused the lowest adult weight and emergence rate. All probiotic groups had higher weight than axenic group. Lact. rhamnosus SD11 group presented high adult emergence rate equivalent to Lact. rhamnosus GG group, which is significantly higher than the others. However, Lact. gasseri SD12 group had significantly lower adult weight and emergence rate when compared with Lact. rhamnosus GG group. The gut probiotics levels were rapidly increased within the first day after receiving probiotics. After probiotic cessation, their number in gut decreased and was maintained at low level, except for Lact. gasseri SD12, which completely vanished since day one. In conclusion, Lact. paracasei SD1, Lact. rhamnosus SD11, and Lact. rhamnosus GG can affect morphogenesis and weight of flies when fed since immature stage and have short period gut colonization. The findings of this study could possibly imply comparable health-promoting effects between Lact. paracasei SD1 and Lact. rhamnosus SD11 to commercial strain in Drosophila model.
Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Lactobacillus , Probióticos , Animais , Drosophila melanogaster/microbiologiaRESUMO
The number of patients with insulin-resistant diabetes has significantly increased. Thus, alternative insulin mimetics are required for such patients. Some evidences indicate that ribosomal protein L10a (RpL10a) is involved in the insulin pathway. In addition, we previously demonstrated that recombinant RpL10a from Fenneropenaeus merguiensis (Fm-RpL10a) could stimulate cell proliferation and trehalose metabolism in RpL10a-over-expressing flies by inducing insulin receptor (InR) expression and some insulin signaling mediators phosphorylation. In this study, we investigated the in silico binding between Fm-RpL10a and InR. The results indicated that Fm-RpL10a bound to InR at residues 635-640 and 697-702 of the FnIII2 domain. This binding was confirmed using a pull-down and immunofluorescence assay. Further analysis indicated that Fm-RpL10a could stimulate glucose utilisation by insulin-resistant cells (IRCs) and healthy cells. Additionally, Fm-RpL10a at a low concentration (1 µg/ml) altered some glucose metabolism-related genes expression in Fm-RpL10a treated IRCs. The qRT-PCR result revealed the up-regulation of Hk1, which encode key enzymes in glycolysis. Conversely, the expression of G6pc3, which participates in gluconeogenesis, was down-regulated. Overall, the results suggest that Fm-RpL10a can alleviate insulin resistance by stimulating insulin signaling via the FnIII2 domain of InR and activate glycolysis. Therefore, Fm-RpL10a may be a candidate insulin mimetic for the treatment of diabetes.
RESUMO
Pediococcus acidilactici HN9 is a beneficial lactic acid bacterium isolated from Nhang, a traditional Thai-style fermented beef. In this study, the molecular properties of P. acidilactici HN9 were characterized to provide insights into its potential probiotic activity. Specifically, this work sought to report the complete genome of P. acidilactici HN9 and perform a comparative genome analysis with other bacterial strains belonging to the genus Pediococcus. Genomic features of HN9 were compared with those of all other bacterial Pediococcus strains to examine the adaptation, evolutionary relationships, and diversity within this genus. Additionally, several bioinformatic approaches were used to investigate phylogenetic relationships, genome stability, virulence factors, bacteriocin production, and antimicrobial resistance genes of the HN9 strain, as well as to ensure its safety as a potential starter culture in food applications. A 2,034,522 bp circular chromosome and two circular plasmids, designated pHN9-1 (42,239-bp) and pHN9-2 (30,711-bp), were detected, and used for pan-genome analysis, as well as for identification of bacteriocin-encoding genes in 129 strains belonging to all Pediococcus species. Two CRISPR regions were identified in P. acidilactici HN9, including type II-A CRISPR/CRISPR-associated (Cas). This study provides an in-depth analysis on P. acidilactici HN9, facilitating a better understanding of its adaptability to different environments and its mechanism to maintain genome stability over time.
RESUMO
Human Fortilin, an antiapoptotic protein, has also been implicated in several diseases; however, several potential uses of fortilin have also been proposed. Bearing the implications of fortilin in mind, fortilin analog, which has no complication with diseases, is required. Since a recombinant full-length fortilin from Fenneropenaeus merguiensis (rFm-Fortilin (FL)) reported only 44% (3e-27) homologous to human fortilin, therefore the biological activities of the Fm-Fortilin (FL) and its fragments (F2, F12, and F23) were investigated for potential use against HEMA toxicity from filling cement to pulp cell. The rFm-Fortilin FL, F2, 12, and F23 were expressed and assayed for proliferation activity. The rFm-Fortilin (FL) showed proliferation activity on human dental pulp cells (HDPCs) and protected the cells from 2-hydroxy-ethyl methacrylate (HEMA) at 1-20 ng/ml. In contrast, none of the rFm-Fortilin fragments promoted HDPC growth that may be due to a lack of three conserved amino acid residues together for binding with the surface of Rab GTPase for proliferative activity. In addition, rFm-Fortilin (FL) activated mineralization and trend to suppressed production of proinflammatory cytokines, including histamine (at 10 ng/ml) and TNF-α (at 100 ng/ml). Besides, the rFm-Fortilin (FL) did not mutate the Chinese hamster ovary (CHO) cell. Therefore, the rFm-Fortilin (FL) has the potential use as a supplementary medical material to promote cell proliferation in patients suffering severe tooth decay and other conditions.