Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832451

RESUMO

In this study, high-strength concrete containing hooked-end steel or amorphous metallic fibers was fabricated, and the electrical conductivity and electromagnetic shielding effectiveness were evaluated after 28 and 208 days based on considerations of the influences of the moisture content. Amorphous metallic fibers, which have the same length and length/equivalent diameter ratio as hooked-end steel fibers, were favored for the formation of a conductive network because they can be added in large quantities owing to their low densities. These fibers have a large specific surface area as thin plates. The electromagnetic shielding effectiveness clearly improved as the electrical conductivity increased, and it can be expected that the shielding effectiveness will approach the saturation level when the fiber volume fraction of amorphous metallic fibers exceeds 0.5 vol.%. Meanwhile, it is necessary to reduce the amount of moisture to conservatively evaluate the electromagnetic shielding performance. In particular, when 0.5 vol.% of amorphous metallic fibers was added, a shielding effectiveness of >80 dB (based on a thickness of 300 mm) was achieved at a low moisture content after 208 days. Similar to the electrical conductivity, excellent shielding effectiveness can be expected from amorphous metallic fibers at low contents compared to that provided by hooked-end steel fibers.

2.
Sensors (Basel) ; 19(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875828

RESUMO

Wireless avionics intra-communication (WAIC) refers to a wireless communication system among electronic components (e.g., sensors and actuators) that are integrated or installed in an aircraft and it is proposed to replace heavy and expensive wired communication cables. Recently, the use of a frequency band (4.2⁻4.4 GHz) for the WAIC (so-called, WAIC band) has been approved by international telecommunication union (ITU). Accordingly, several existing wireless protocols such as IEEE 802.11 and IEEE 802.15 are being considered as candidate techniques for the intra-avionics sensor network. In this paper, we perform a real field experiment to investigate wireless channel characteristics in intra-avionics sensor networks at the WAIC bands by a software-defined radio platform (universal software radio peripheral, USRP) and self-produced monopole antennas for the WAIC band. Through the experiment, we validated the feasibility of IEEE 802.11 protocol for the intra-avionics sensor network at the WAIC band in real aircraft environments. Furthermore, based on the measurement data, we evaluated the bit error rate (BER) performance of multiple antenna techniques where we considered the maximum ratio combining (MRC) for the multi-antenna receiver and the space-time block coding (STBC) for the multi-antenna transmitter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA